44、第九章 动态规划part11

本节内容

  • 123.买卖股票的最佳时机III
  • 188.买卖股票的最佳时机IV

123.买卖股票的最佳时机III※

建议

题目链接: https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iii/
文章讲解: https://programmercarl.com/0123.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4%BD%B3%E6%97%B6%E6%9C%BAIII.html
视频讲解:

题目分析




方案一

苦思一阵,没想起来,看来一眼题解。动态规划最难的两点: 1、dp数组的定义;2、递推函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {  
public int maxProfit(int[] prices) {
int[][] dp = new int[prices.length][4];

dp[0][0] = -prices[0];
dp[0][1] = 0;
dp[0][2] = dp[0][1] - prices[0];
dp[0][3] = 0;

for (int i = 1; i < prices.length; i++) {
dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] - prices[i]);
dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] + prices[i]);
}

return dp[prices.length - 1][3];
}
}

结果

解答成功:
执行耗时:18 ms,击败了61.43% 的Java用户
内存消耗:54.1 MB,击败了96.77% 的Java用户

分析

时间复杂度:
O( n )

空间复杂度:
O( n )

代码随想录

https://programmercarl.com/0123.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4%BD%B3%E6%97%B6%E6%9C%BAIII.html

思路

这道题目相对 121.买卖股票的最佳时机122.买卖股票的最佳时机II  难了不少。

关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。

接来下用动态规划五部曲详细分析一下:

  1. 确定dp数组以及下标的含义

一天一共就有五个状态,

  1. 没有操作 (其实我们也可以不设置这个状态)
  2. 第一次持有股票
  3. 第一次不持有股票
  4. 第二次持有股票
  5. 第二次不持有股票

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。

  1. 确定递推公式

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]

    感觉这里才是思考的难点

  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

感觉这里才是思考的难点

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

  1. dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

  1. 确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

  1. 举例推导dp数组

以输入[1,2,3,4,5]为例

大家可以看到红色框为最后两次卖出的状态。

现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出手里所剩的钱一定是最多的。

所以最终最大利润是dp[4][4]

以上五部都分析完了,不难写出如下代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// 版本一
class Solution {
public:
int maxProfit(vector<int>& prices) {
if (prices.size() == 0) return 0;
vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
for (int i = 1; i < prices.size(); i++) {
dp[i][0] = dp[i - 1][0];
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
return dp[prices.size() - 1][4];
}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n × 5)

当然,大家可以看到力扣官方题解里的一种优化空间写法,我这里给出对应的C++版本:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// 版本二
class Solution {
public:
int maxProfit(vector<int>& prices) {
if (prices.size() == 0) return 0;
vector<int> dp(5, 0);
dp[1] = -prices[0];
dp[3] = -prices[0];
for (int i = 1; i < prices.size(); i++) {
dp[1] = max(dp[1], dp[0] - prices[i]);
dp[2] = max(dp[2], dp[1] + prices[i]);
dp[3] = max(dp[3], dp[2] - prices[i]);
dp[4] = max(dp[4], dp[3] + prices[i]);
}
return dp[4];
}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

大家会发现dp[2]利用的是当天的dp[1]。 但结果也是对的。

简单解释一下:

dp[1] = max(dp[1], dp[0] - prices[i]); 如果dp[1]取dp[1],即保持买入股票的状态,那么 dp[2] = max(dp[2], dp[1] + prices[i]);中dp[1] + prices[i] 就是今天卖出。

如果dp[1]取dp[0] - prices[i],今天买入股票,那么dp[2] = max(dp[2], dp[1] + prices[i]);中的dp[1] + prices[i]相当于是今天再卖出股票,一买一卖收益为0,对所得现金没有影响。相当于今天买入股票又卖出股票,等于没有操作,保持昨天卖出股票的状态了。

这种写法看上去简单,其实思路很绕,不建议大家这么写,这么思考,很容易把自己绕进去!

对于本题,把版本一的写法研究明白,足以!

拓展

其实我们可以不设置,‘0. 没有操作’ 这个状态,因为没有操作,手上的现金自然就是0, 正如我们在 121.买卖股票的最佳时机 和  122.买卖股票的最佳时机II 也没有设置这一状态是一样的。

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// 版本三 
class Solution {
public:
int maxProfit(vector<int>& prices) {
if (prices.size() == 0) return 0;
vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
for (int i = 1; i < prices.size(); i++) {
dp[i][1] = max(dp[i - 1][1], 0 - prices[i]);
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
return dp[prices.size() - 1][4];
}
};

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
// 版本一
class Solution {
public int maxProfit(int[] prices) {
int len = prices.length;
// 边界判断, 题目中 length >= 1, 所以可省去
if (prices.length == 0) return 0;

/*
* 定义 5 种状态:
* 0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出
*/
int[][] dp = new int[len][5];
dp[0][1] = -prices[0];
// 初始化第二次买入的状态是确保 最后结果是最多两次买卖的最大利润
dp[0][3] = -prices[0];

for (int i = 1; i < len; i++) {
dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);
dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}

return dp[len - 1][4];
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
// 版本二: 空间优化
class Solution {
public int maxProfit(int[] prices) {
int[] dp = new int[4];
// 存储两次交易的状态就行了
// dp[0]代表第一次交易的买入
dp[0] = -prices[0];
// dp[1]代表第一次交易的卖出
dp[1] = 0;
// dp[2]代表第二次交易的买入
dp[2] = -prices[0];
// dp[3]代表第二次交易的卖出
dp[3] = 0;
for(int i = 1; i <= prices.length; i++){
// 要么保持不变,要么没有就买,有了就卖
dp[0] = Math.max(dp[0], -prices[i-1]);
dp[1] = Math.max(dp[1], dp[0]+prices[i-1]);
// 这已经是第二次交易了,所以得加上前一次交易卖出去的收获
dp[2] = Math.max(dp[2], dp[1]-prices[i-1]);
dp[3] = Math.max(dp[3], dp[2]+ prices[i-1]);
}
return dp[3];
}
}

188.买卖股票的最佳时机IV※

建议

题目链接: https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iv/
文章讲解: https://programmercarl.com/0188.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4%BD%B3%E6%97%B6%E6%9C%BAIV.html
视频讲解:

题目分析



方案一

可以看得出,此问题上一个问题 123.买卖股票的最佳时机III 有很多相似之处!!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {  
public int maxProfit(int k, int[] prices) {
int[][] dp = new int[prices.length][2 * k];

dp[0][0] = -prices[0]; // 持有股票
dp[0][1] = 0;

for (int i = 1; i < k; i++) {
dp[0][2 * i] = dp[0][2 * i - 1] - prices[0]; // 持有股票
dp[0][2 * i + 1] = 0;
}

for (int i = 1; i < prices.length; i++) {
dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
for (int j = 1; j < k; j++) {
dp[i][2 * j] = Math.max(dp[i - 1][2 * j], dp[i - 1][2 * j - 1] - prices[i]);
dp[i][2 * j + 1] = Math.max(dp[i - 1][2 * j + 1], dp[i - 1][2 * j] + prices[i]);
}
}

return dp[prices.length - 1][2 * k - 1];
}
}

结果

解答成功:
执行耗时:2 ms,击败了68.54% 的Java用户
内存消耗:42.5 MB,击败了27.65% 的Java用户

分析

时间复杂度:
O( k * n )

空间复杂度:
O( k * n )

代码随想录

https://programmercarl.com/0188.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4%BD%B3%E6%97%B6%E6%9C%BAIV.html

思路

这道题目可以说是 123.买卖股票的最佳时机III 的进阶版,这里要求至多有k次交易。

动规五部曲,分析如下:

  1. 确定dp数组以及下标的含义

123.买卖股票的最佳时机III 中,我是定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。

使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]

j的状态表示为:

  • 0 表示不操作
  • 1 第一次买入
  • 2 第一次卖出
  • 3 第二次买入
  • 4 第二次卖出
  • …..

大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入

题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。

所以二维dp数组的C++定义为:

1
vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
  1. 确定递推公式

还要强调一下:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可以类比剩下的状态,代码如下:

1
2
3
4
for (int j = 0; j < 2 * k - 1; j += 2) {
dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}

本题和 123.买卖股票的最佳时机III  最大的区别就是这里要类比j为奇数是买,偶数是卖的状态

  1. dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

第二次卖出初始化dp[0][4] = 0;

所以同理可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]

代码如下:

1
2
3
for (int j = 1; j < 2 * k; j += 2) {
dp[0][j] = -prices[0];
}

在初始化的地方同样要类比j为偶数是卖、奇数是买的状态

  1. 确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

  1. 举例推导dp数组

以输入[1,2,3,4,5],k=2为例。

最后一次卖出,一定是利润最大的,dp[prices.size() - 1][2 * k]即红色部分就是最后求解。

以上分析完毕,C++代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {

if (prices.size() == 0) return 0;
vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
for (int j = 1; j < 2 * k; j += 2) {
dp[0][j] = -prices[0];
}
for (int i = 1;i < prices.size(); i++) {
for (int j = 0; j < 2 * k - 1; j += 2) {
dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
}
return dp[prices.size() - 1][2 * k];
}
};
  • 时间复杂度: O(n * k),其中 n 为 prices 的长度
  • 空间复杂度: O(n * k)

当然有的解法是定义一个三维数组dp[i][j][k],第i天,第j次买卖,k表示买还是卖的状态,从定义上来讲是比较直观。

但感觉三维数组操作起来有些麻烦,我是直接用二维数组来模拟三维数组的情况,代码看起来也清爽一些。

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// 版本一: 三维 dp数组
class Solution {
public int maxProfit(int k, int[] prices) {
if (prices.length == 0) return 0;

// [天数][交易次数][是否持有股票]
int len = prices.length;
int[][][] dp = new int[len][k + 1][2];

// dp数组初始化
// 初始化所有的交易次数是为确保 最后结果是最多 k 次买卖的最大利润
for (int i = 0; i <= k; i++) {
dp[0][i][1] = -prices[0];
}

for (int i = 1; i < len; i++) {
for (int j = 1; j <= k; j++) {
// dp方程, 0表示不持有/卖出, 1表示持有/买入
dp[i][j][0] = Math.max(dp[i - 1][j][0], dp[i - 1][j][1] + prices[i]);
dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i - 1][j - 1][0] - prices[i]);
}
}
return dp[len - 1][k][0];
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
// 版本二: 二维 dp数组
class Solution {
public int maxProfit(int k, int[] prices) {
if (prices.length == 0) return 0;

// [天数][股票状态]
// 股票状态: 奇数表示第 k 次交易持有/买入, 偶数表示第 k 次交易不持有/卖出, 0 表示没有操作
int len = prices.length;
int[][] dp = new int[len][k*2 + 1];

// dp数组的初始化, 与版本一同理
for (int i = 1; i < k*2; i += 2) {
dp[0][i] = -prices[0];
}

for (int i = 1; i < len; i++) {
for (int j = 0; j < k*2 - 1; j += 2) {
dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
}
return dp[len - 1][k*2];
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
//版本三:一维 dp数组 (下面有和卡哥邏輯一致的一維數組JAVA解法)
class Solution {
public int maxProfit(int k, int[] prices) {
if(prices.length == 0){
return 0;
}
if(k == 0){
return 0;
}
// 其实就是123题的扩展,123题只用记录2次交易的状态
// 这里记录k次交易的状态就行了
// 每次交易都有买入,卖出两个状态,所以要乘 2
int[] dp = new int[2 * k];
// 按123题解题格式那样,做一个初始化
for(int i = 0; i < dp.length / 2; i++){
dp[i * 2] = -prices[0];
}
for(int i = 1; i <= prices.length; i++){
dp[0] = Math.max(dp[0], -prices[i - 1]);
dp[1] = Math.max(dp[1], dp[0] + prices[i - 1]);
// 还是与123题一样,与123题对照来看
// 就很容易啦
for(int j = 2; j < dp.length; j += 2){
dp[j] = Math.max(dp[j], dp[j - 1] - prices[i-1]);
dp[j + 1] = Math.max(dp[j + 1], dp[j] + prices[i - 1]);
}
}
// 返回最后一次交易卖出状态的结果就行了
return dp[dp.length - 1];
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class Solution {
public int maxProfit(int k, int[] prices) {

//edge cases
if(prices.length == 0 || k == 0)
return 0;


int dp[] = new int [k * 2 + 1];

//和卡哥邏輯一致,奇數天購入股票,故初始化只初始化奇數天。
for(int i = 1; i < 2 * k + 1; i += 2){
dp[i] = -prices[0];
}

for(int i = 1; i < prices.length; i++){ //i 從 1 開始,因爲第 i = 0 天已經透過初始化完成了。
for(int j = 1; j < 2 * k + 1; j++){ //j 從 1 開始,因爲第 j = 0 天已經透過初始化完成了。
//奇數天購買
if(j % 2 == 1)
dp[j] = Math.max(dp[j], dp[j - 1] - prices[i]);
//偶數天賣出
else
dp[j] = Math.max(dp[j], dp[j - 1] + prices[i]);
}
//打印DP數組
//for(int x : dp)
// System.out.print(x +", ");
//System.out.println();
}
//return 第2 * k次賣出的獲利。
return dp[2 * k];
}
}

44、第九章 动态规划part11
http://yuanql.top/2023/08/18/02_1_代码随想录算法训练营18期/44、第九章 动态规划part11/
作者
Qingli Yuan
发布于
2023年8月18日
许可协议