本节内容
- 123.买卖股票的最佳时机III
- 188.买卖股票的最佳时机IV
123.买卖股票的最佳时机III※
建议:
题目链接: https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iii/
文章讲解: https://programmercarl.com/0123.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4%BD%B3%E6%97%B6%E6%9C%BAIII.html
视频讲解:
题目分析




方案一
苦思一阵,没想起来,看来一眼题解。动态规划最难的两点: 1、dp数组的定义;2、递推函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
| class Solution { public int maxProfit(int[] prices) { int[][] dp = new int[prices.length][4]; dp[0][0] = -prices[0]; dp[0][1] = 0; dp[0][2] = dp[0][1] - prices[0]; dp[0][3] = 0; for (int i = 1; i < prices.length; i++) { dp[i][0] = Math.max(dp[i - 1][0], -prices[i]); dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]); dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] - prices[i]); dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] + prices[i]); } return dp[prices.length - 1][3]; } }
|
结果
解答成功:
执行耗时:18 ms,击败了61.43% 的Java用户
内存消耗:54.1 MB,击败了96.77% 的Java用户
分析
时间复杂度:
O( n )
空间复杂度:
O( n )
代码随想录
https://programmercarl.com/0123.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4%BD%B3%E6%97%B6%E6%9C%BAIII.html
思路
这道题目相对 121.买卖股票的最佳时机 和 122.买卖股票的最佳时机II 难了不少。
关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。
接来下用动态规划五部曲详细分析一下:
- 确定dp数组以及下标的含义
一天一共就有五个状态,
- 没有操作 (其实我们也可以不设置这个状态)
- 第一次持有股票
- 第一次不持有股票
- 第二次持有股票
- 第二次不持有股票
dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。
需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。
例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。
- 确定递推公式
达到dp[i][1]状态,有两个具体操作:
- 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
感觉这里才是思考的难点
- 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?
一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);
同理dp[i][2]也有两个操作:
- 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
- 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
同理可推出剩下状态部分:
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
感觉这里才是思考的难点
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
- dp数组如何初始化
第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;
第0天做第一次买入的操作,dp[0][1] = -prices[0];
第0天做第一次卖出的操作,这个初始值应该是多少呢?
此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;
第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
所以第二次买入操作,初始化为:dp[0][3] = -prices[0];
同理第二次卖出初始化dp[0][4] = 0;
- 确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
- 举例推导dp数组
以输入[1,2,3,4,5]为例

大家可以看到红色框为最后两次卖出的状态。
现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出手里所剩的钱一定是最多的。
所以最终最大利润是dp[4][4]
以上五部都分析完了,不难写出如下代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
| class Solution { public: int maxProfit(vector<int>& prices) { if (prices.size() == 0) return 0; vector<vector<int>> dp(prices.size(), vector<int>(5, 0)); dp[0][1] = -prices[0]; dp[0][3] = -prices[0]; for (int i = 1; i < prices.size(); i++) { dp[i][0] = dp[i - 1][0]; dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]); dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]); dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]); dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]); } return dp[prices.size() - 1][4]; } };
|
- 时间复杂度:O(n)
- 空间复杂度:O(n × 5)
当然,大家可以看到力扣官方题解里的一种优化空间写法,我这里给出对应的C++版本:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
| class Solution { public: int maxProfit(vector<int>& prices) { if (prices.size() == 0) return 0; vector<int> dp(5, 0); dp[1] = -prices[0]; dp[3] = -prices[0]; for (int i = 1; i < prices.size(); i++) { dp[1] = max(dp[1], dp[0] - prices[i]); dp[2] = max(dp[2], dp[1] + prices[i]); dp[3] = max(dp[3], dp[2] - prices[i]); dp[4] = max(dp[4], dp[3] + prices[i]); } return dp[4]; } };
|
大家会发现dp[2]利用的是当天的dp[1]。 但结果也是对的。
简单解释一下:
dp[1] = max(dp[1], dp[0] - prices[i]); 如果dp[1]取dp[1],即保持买入股票的状态,那么 dp[2] = max(dp[2], dp[1] + prices[i]);中dp[1] + prices[i] 就是今天卖出。
如果dp[1]取dp[0] - prices[i],今天买入股票,那么dp[2] = max(dp[2], dp[1] + prices[i]);中的dp[1] + prices[i]相当于是今天再卖出股票,一买一卖收益为0,对所得现金没有影响。相当于今天买入股票又卖出股票,等于没有操作,保持昨天卖出股票的状态了。
这种写法看上去简单,其实思路很绕,不建议大家这么写,这么思考,很容易把自己绕进去!
对于本题,把版本一的写法研究明白,足以!
拓展
其实我们可以不设置,‘0. 没有操作’ 这个状态,因为没有操作,手上的现金自然就是0, 正如我们在 121.买卖股票的最佳时机 和 122.买卖股票的最佳时机II 也没有设置这一状态是一样的。
代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
| class Solution { public: int maxProfit(vector<int>& prices) { if (prices.size() == 0) return 0; vector<vector<int>> dp(prices.size(), vector<int>(5, 0)); dp[0][1] = -prices[0]; dp[0][3] = -prices[0]; for (int i = 1; i < prices.size(); i++) { dp[i][1] = max(dp[i - 1][1], 0 - prices[i]); dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]); dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]); dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]); } return dp[prices.size() - 1][4]; } };
|
代码实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
| class Solution { public int maxProfit(int[] prices) { int len = prices.length; if (prices.length == 0) return 0;
int[][] dp = new int[len][5]; dp[0][1] = -prices[0]; dp[0][3] = -prices[0];
for (int i = 1; i < len; i++) { dp[i][1] = Math.max(dp[i - 1][1], -prices[i]); dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]); dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]); dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]); }
return dp[len - 1][4]; } }
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| class Solution { public int maxProfit(int[] prices) { int[] dp = new int[4]; dp[0] = -prices[0]; dp[1] = 0; dp[2] = -prices[0]; dp[3] = 0; for(int i = 1; i <= prices.length; i++){ dp[0] = Math.max(dp[0], -prices[i-1]); dp[1] = Math.max(dp[1], dp[0]+prices[i-1]); dp[2] = Math.max(dp[2], dp[1]-prices[i-1]); dp[3] = Math.max(dp[3], dp[2]+ prices[i-1]); } return dp[3]; } }
|
188.买卖股票的最佳时机IV※
建议:
题目链接: https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iv/
文章讲解: https://programmercarl.com/0188.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4%BD%B3%E6%97%B6%E6%9C%BAIV.html
视频讲解:
题目分析



方案一
可以看得出,此问题上一个问题 123.买卖股票的最佳时机III 有很多相似之处!!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| class Solution { public int maxProfit(int k, int[] prices) { int[][] dp = new int[prices.length][2 * k]; dp[0][0] = -prices[0]; dp[0][1] = 0; for (int i = 1; i < k; i++) { dp[0][2 * i] = dp[0][2 * i - 1] - prices[0]; dp[0][2 * i + 1] = 0; } for (int i = 1; i < prices.length; i++) { dp[i][0] = Math.max(dp[i - 1][0], -prices[i]); dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]); for (int j = 1; j < k; j++) { dp[i][2 * j] = Math.max(dp[i - 1][2 * j], dp[i - 1][2 * j - 1] - prices[i]); dp[i][2 * j + 1] = Math.max(dp[i - 1][2 * j + 1], dp[i - 1][2 * j] + prices[i]); } } return dp[prices.length - 1][2 * k - 1]; } }
|
结果
解答成功:
执行耗时:2 ms,击败了68.54% 的Java用户
内存消耗:42.5 MB,击败了27.65% 的Java用户
分析
时间复杂度:
O( k * n )
空间复杂度:
O( k * n )
代码随想录
https://programmercarl.com/0188.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4%BD%B3%E6%97%B6%E6%9C%BAIV.html
思路
这道题目可以说是 123.买卖股票的最佳时机III 的进阶版,这里要求至多有k次交易。
动规五部曲,分析如下:
- 确定dp数组以及下标的含义
在 123.买卖股票的最佳时机III 中,我是定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。
使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]
j的状态表示为:
- 0 表示不操作
- 1 第一次买入
- 2 第一次卖出
- 3 第二次买入
- 4 第二次卖出
- …..
大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入。
题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。
所以二维dp数组的C++定义为:
1
| vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
|
- 确定递推公式
还要强调一下:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。
达到dp[i][1]状态,有两个具体操作:
- 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
- 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);
同理dp[i][2]也有两个操作:
- 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
- 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
同理可以类比剩下的状态,代码如下:
1 2 3 4
| for (int j = 0; j < 2 * k - 1; j += 2) { dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]); dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]); }
|
本题和 123.买卖股票的最佳时机III 最大的区别就是这里要类比j为奇数是买,偶数是卖的状态。
- dp数组如何初始化
第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;
第0天做第一次买入的操作,dp[0][1] = -prices[0];
第0天做第一次卖出的操作,这个初始值应该是多少呢?
此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;
第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
所以第二次买入操作,初始化为:dp[0][3] = -prices[0];
第二次卖出初始化dp[0][4] = 0;
所以同理可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]
代码如下:
1 2 3
| for (int j = 1; j < 2 * k; j += 2) { dp[0][j] = -prices[0]; }
|
在初始化的地方同样要类比j为偶数是卖、奇数是买的状态。
- 确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
- 举例推导dp数组
以输入[1,2,3,4,5],k=2为例。

最后一次卖出,一定是利润最大的,dp[prices.size() - 1][2 * k]即红色部分就是最后求解。
以上分析完毕,C++代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
| class Solution { public: int maxProfit(int k, vector<int>& prices) {
if (prices.size() == 0) return 0; vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0)); for (int j = 1; j < 2 * k; j += 2) { dp[0][j] = -prices[0]; } for (int i = 1;i < prices.size(); i++) { for (int j = 0; j < 2 * k - 1; j += 2) { dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]); dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]); } } return dp[prices.size() - 1][2 * k]; } };
|
- 时间复杂度: O(n * k),其中 n 为 prices 的长度
- 空间复杂度: O(n * k)
当然有的解法是定义一个三维数组dp[i][j][k],第i天,第j次买卖,k表示买还是卖的状态,从定义上来讲是比较直观。
但感觉三维数组操作起来有些麻烦,我是直接用二维数组来模拟三维数组的情况,代码看起来也清爽一些。
代码实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
| class Solution { public int maxProfit(int k, int[] prices) { if (prices.length == 0) return 0;
int len = prices.length; int[][][] dp = new int[len][k + 1][2]; for (int i = 0; i <= k; i++) { dp[0][i][1] = -prices[0]; }
for (int i = 1; i < len; i++) { for (int j = 1; j <= k; j++) { dp[i][j][0] = Math.max(dp[i - 1][j][0], dp[i - 1][j][1] + prices[i]); dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i - 1][j - 1][0] - prices[i]); } } return dp[len - 1][k][0]; } }
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| class Solution { public int maxProfit(int k, int[] prices) { if (prices.length == 0) return 0;
int len = prices.length; int[][] dp = new int[len][k*2 + 1]; for (int i = 1; i < k*2; i += 2) { dp[0][i] = -prices[0]; }
for (int i = 1; i < len; i++) { for (int j = 0; j < k*2 - 1; j += 2) { dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]); dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]); } } return dp[len - 1][k*2]; } }
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| class Solution { public int maxProfit(int k, int[] prices) { if(prices.length == 0){ return 0; } if(k == 0){ return 0; } int[] dp = new int[2 * k]; for(int i = 0; i < dp.length / 2; i++){ dp[i * 2] = -prices[0]; } for(int i = 1; i <= prices.length; i++){ dp[0] = Math.max(dp[0], -prices[i - 1]); dp[1] = Math.max(dp[1], dp[0] + prices[i - 1]); for(int j = 2; j < dp.length; j += 2){ dp[j] = Math.max(dp[j], dp[j - 1] - prices[i-1]); dp[j + 1] = Math.max(dp[j + 1], dp[j] + prices[i - 1]); } } return dp[dp.length - 1]; } }
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
| class Solution { public int maxProfit(int k, int[] prices) {
if(prices.length == 0 || k == 0) return 0;
int dp[] = new int [k * 2 + 1];
for(int i = 1; i < 2 * k + 1; i += 2){ dp[i] = -prices[0]; }
for(int i = 1; i < prices.length; i++){ for(int j = 1; j < 2 * k + 1; j++){ if(j % 2 == 1) dp[j] = Math.max(dp[j], dp[j - 1] - prices[i]); else dp[j] = Math.max(dp[j], dp[j - 1] + prices[i]); } } return dp[2 * k]; } }
|