39、第九章 动态规划part06
本节内容
- 完全背包理论基础
- 518.零钱兑换II
- 组合总和 Ⅳ
完全背包理论基础※
完全背包
有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weigh[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。
同样leetcode上没有纯完全背包问题,都是需要完全背包的各种应用,需要转化成完全背包问题。
518.零钱兑换II※
建议:
题目链接: https://leetcode.cn/problems/coin-change-ii/
文章讲解: https://programmercarl.com/0518.%E9%9B%B6%E9%92%B1%E5%85%91%E6%8D%A2II.html
视频讲解:
题目分析
方案一
太菜了,太菜了,他确实和 494.目标和几乎一模一样。只不过是01背包和完全背包之间的区别。但是我没看题解,想起来了dp但没想到递推公式,还是对dp数组的定义不熟悉!!!
1 |
|
结果
解答成功:
执行耗时:2 ms,击败了99.12% 的Java用户
内存消耗:38.9 MB,击败了56.48% 的Java用户
分析
时间复杂度:
O( n * amount )
空间复杂度:
O( amount )
代码随想录
https://programmercarl.com/0518.%E9%9B%B6%E9%92%B1%E5%85%91%E6%8D%A2II.html
思路
这是一道典型的背包问题,一看到钱币数量不限,就知道这是一个完全背包。
但本题和纯完全背包不一样,纯完全背包是凑成背包最大价值是多少,而本题是要求凑成总金额的物品组合个数!
注意题目描述中是凑成总金额的硬币组合数,为什么强调是组合数呢?
例如示例一:
5 = 2 + 2 + 1
5 = 2 + 1 + 2
这是一种组合,都是 2 2 1。
如果问的是排列数,那么上面就是两种排列了。
组合不强调元素之间的顺序,排列强调元素之间的顺序。 其实这一点我们在讲解回溯算法专题的时候就讲过了哈。
那我为什么要介绍这些呢,因为这和下文讲解遍历顺序息息相关!
回归本题,动规五步曲来分析如下:
- 确定dp数组以及下标的含义
dp[j]:凑成总金额j的货币组合数为dp[j]
- 确定递推公式
dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。
所以递推公式:dp[j] += dp[j - coins[i]];
- dp数组如何初始化
首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。
那么 dp[0] = 1 有没有含义,其实既可以说 凑成总金额0的货币组合数为1,也可以说 凑成总金额0的货币组合数为0,好像都没有毛病。
但题目描述中,也没明确说 amount = 0 的情况,结果应该是多少。
这里我认为题目描述还是要说明一下,因为后台测试数据是默认,amount = 0 的情况,组合数为1的。
下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]
dp[0]=1还说明了一种情况:如果正好选了coins[i]后,也就是j-coins[i] == 0的情况表示这个硬币刚好能选,此时dp[0]为1表示只选coins[i]存在这样的一种选法。
- 确定遍历顺序
本题中我们是外层for循环遍历物品(钱币),内层for遍历背包(金钱总额),还是外层for遍历背包(金钱总额),内层for循环遍历物品(钱币)呢?
纯完全背包求得装满背包的最大价值是多少,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!
而本题要求凑成总和的组合数,元素之间明确要求没有顺序。
所以纯完全背包是能凑成总和就行,不用管怎么凑的。
本题是求凑出来的方案个数,且每个方案个数是为组合数。
那么本题,两个for循环的先后顺序可就有说法了。
我们先来看 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况。
代码如下:
1 |
|
假设:coins[0] = 1,coins[1] = 5。
那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。
所以这种遍历顺序中dp[j]里计算的是组合数!
如果把两个for交换顺序,代码如下:
1 |
|
背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。
此时dp[j]里算出来的就是排列数!
可能这里很多同学还不是很理解,建议动手把这两种方案的dp数组数值变化打印出来,对比看一看!(实践出真知)
- 举例推导dp数组
输入: amount = 5, coins = [1, 2, 5] ,dp状态图如下:
最后红色框dp[amount]为最终结果。
以上分析完毕,C++代码如下:
1 |
|
- 时间复杂度: O(mn),其中 m 是amount,n 是 coins 的长度
- 空间复杂度: O(m)
总结
在求装满背包有几种方案的时候,认清遍历顺序是非常关键的。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
代码实现
1 |
|
1 |
|
377. 组合总和 Ⅳ※
建议:
题目链接: https://leetcode.cn/problems/combination-sum-iv/
文章讲解: https://programmercarl.com/0377.%E7%BB%84%E5%90%88%E6%80%BB%E5%92%8C%E2%85%A3.html
视频讲解:
题目分析
方案一
蒙出来了,说句实话,没想明白。
1 |
|
结果
解答成功:
执行耗时:1 ms,击败了98.28% 的Java用户
内存消耗:38.5 MB,击败了93.16% 的Java用户
分析
时间复杂度:
O( target * n )
空间复杂度:
O( target )
代码随想录
https://programmercarl.com/0377.%E7%BB%84%E5%90%88%E6%80%BB%E5%92%8C%E2%85%A3.html
思路
本题题目描述说是求组合,但又说是可以元素相同顺序不同的组合算两个组合,其实就是求排列!
弄清什么是组合,什么是排列很重要。
组合不强调顺序,(1,5)和(5,1)是同一个组合。
排列强调顺序,(1,5)和(5,1)是两个不同的排列。
其本质是本题求的是排列总和,而且仅仅是求排列总和的个数,并不是把所有的排列都列出来。
如果本题要把排列都列出来的话,只能使用回溯算法爆搜。
动规五部曲分析如下:
- 确定dp数组以及下标的含义
dp[i]: 凑成目标正整数为i的排列个数为dp[i]
- 确定递推公式
dp[i](考虑nums[j])可以由 dp[i - nums[j]](不考虑nums[j]) 推导出来。
因为只要得到nums[j],排列个数dp[i - nums[j]],就是dp[i]的一部分。
求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];
本题也一样。
- dp数组如何初始化
因为递推公式dp[i] += dp[i - nums[j]]的缘故,dp[0]要初始化为1,这样递归其他dp[i]的时候才会有数值基础。
至于dp[0] = 1 有没有意义呢?
其实没有意义,所以我也不去强行解释它的意义了,因为题目中也说了:给定目标值是正整数! 所以dp[0] = 1是没有意义的,仅仅是为了推导递推公式。
至于非0下标的dp[i]应该初始为多少呢?
初始化为0,这样才不会影响dp[i]累加所有的dp[i - nums[j]]。
- 确定遍历顺序
个数可以不限使用,说明这是一个完全背包。
得到的集合是排列,说明需要考虑元素之间的顺序。
本题要求的是排列,那么这个for循环嵌套的顺序可以有说法了。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
如果把遍历nums(物品)放在外循环,遍历target的作为内循环的话,举一个例子:计算dp[4]的时候,结果集只有 {1,3} 这样的集合,不会有{3,1}这样的集合,因为nums遍历放在外层,3只能出现在1后面!
所以本题遍历顺序最终遍历顺序:target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历。
- 举例来推导dp数组
我们再来用示例中的例子推导一下:
如果代码运行处的结果不是想要的结果,就把dp[i]都打出来,看看和我们推导的一不一样。
以上分析完毕,C++代码如下:
1 |
|
- 时间复杂度: O(target * n),其中 n 为 nums 的长度
- 空间复杂度: O(target)
C++测试用例有两个数相加超过int的数据,所以需要在if里加上dp[i] < INT_MAX - dp[i - num]。
但java就不用考虑这个限制,java里的int也是四个字节吧,也有可能leetcode后台对不同语言的测试数据不一样。
总结
求装满背包有几种方法,递归公式都是一样的,没有什么差别,但关键在于遍历顺序!
本题与 518.零钱兑换II 就是一个鲜明的对比,一个是求排列,一个是求组合,遍历顺序完全不同。
如果对遍历顺序没有深度理解的话,做这种完全背包的题目会很懵逼,即使题目刷过了可能也不太清楚具体是怎么过的。
代码实现
1 |
|