38、第九章 动态规划part05

本节内容

  • 1049.最后一块石头的重量II
  • 494.目标和
  • 474.一和零

1049.最后一块石头的重量II※

建议

题目链接: https://leetcode.cn/problems/last-stone-weight-ii/
文章讲解: https://programmercarl.com/1049.%E6%9C%80%E5%90%8E%E4%B8%80%E5%9D%97%E7%9F%B3%E5%A4%B4%E7%9A%84%E9%87%8D%E9%87%8FII.html
视频讲解: https://www.bilibili.com/video/BV14M411C7oV/

题目分析


方案一

本题的解题关键是:将这一堆石头可能的分成两堆,分成重量最相近时候的两堆,然后拿着两堆石头相撞,剩下的就是最小的最后一块石头的重量了。

所以说此问题就转变为与 416. 分割等和子集 问题了,尽可能的将石头分割好,以此来解决此问题。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public int lastStoneWeightII(int[] stones) {
int sum = Arrays.stream(stones).sum();
int mind = sum / 2;
int[] dp = new int[mind + 1];

for (int i = stones[0]; i < mind + 1; i++) {
dp[i] = stones[0];
}

for (int i = 1; i < stones.length; i++) {
for (int j = mind; j >= stones[i]; j--) {
dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);
}
}

return sum - 2 * dp[mind];
}
}

结果

解答成功:
执行耗时:3 ms,击败了43.54% 的Java用户
内存消耗:38.9 MB,击败了65.85% 的Java用户

分析

时间复杂度:
O( n * sum( stones ) )

空间复杂度:
O( sum( stones ) )

代码随想录

https://programmercarl.com/1049.%E6%9C%80%E5%90%8E%E4%B8%80%E5%9D%97%E7%9F%B3%E5%A4%B4%E7%9A%84%E9%87%8D%E9%87%8FII.html

思路

本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了

本题物品的重量为stones[i],物品的价值也为stones[i]。

对应着01背包里的物品重量weight[i]和 物品价值value[i]。

接下来进行动规五步曲:

  1. 确定dp数组以及下标的含义

**dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j]**。

可以回忆一下01背包中,dp[j]的含义,容量为j的背包,最多可以装的价值为 dp[j]。

相对于 01背包,本题中,石头的重量是 stones[i],石头的价值也是 stones[i] ,可以 “最多可以装的价值为 dp[j]” == “最多可以背的重量为dp[j]”

  1. 确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题则是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);

一些同学可能看到这dp[j - stones[i]] + stones[i]中 又有- stones[i] 又有+stones[i],看着有点晕乎。

大家可以再去看 dp[j]的含义。

  1. dp数组如何初始化

既然 dp[j]中的j表示容量,那么最大容量(重量)是多少呢,就是所有石头的重量和。

因为提示中给出1 <= stones.length <= 30,1 <= stones[i] <= 1000,所以最大重量就是30 * 1000 。

而我们要求的target其实只是最大重量的一半,所以dp数组开到15000大小就可以了。

当然也可以把石头遍历一遍,计算出石头总重量 然后除2,得到dp数组的大小。

此处就直接用15000了。

接下来就是如何初始化dp[j]呢,因为重量都不会是负数,所以dp[j]都初始化为0就可以了,这样在递归公式dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]); 中dp[j]才不会初始值所覆盖。

代码为:

1
vector<int> dp(15001, 0);
  1. 确定遍历顺序

如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

代码如下:

1
2
3
4
5
6
for (int i = 0; i < stones.size(); i++) { // 遍历物品
for (int j = target; j >= stones[i]; j--) { // 遍历背包
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
}
}

  1. 举例推导dp数组

举例,输入:[2,4,1,1],此时target = (2 + 4 + 1 + 1)/2 = 4 ,dp数组状态图如下:

最后dp[target]里是容量为target的背包所能背的最大重量。

那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。

在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的

那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]。

以上分析完毕,C++代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Solution {
public:
int lastStoneWeightII(vector<int>& stones) {
vector<int> dp(15001, 0);
int sum = 0;
for (int i = 0; i < stones.size(); i++) sum += stones[i];
int target = sum / 2;
for (int i = 0; i < stones.size(); i++) { // 遍历物品
for (int j = target; j >= stones[i]; j--) { // 遍历背包
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
}
}
return sum - dp[target] - dp[target];
}
};

  • 时间复杂度:O(m × n) , m是石头总重量(准确的说是总重量的一半),n为石头块数
  • 空间复杂度:O(m)

代码实现

二维数组版本(便于理解)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution {
public int lastStoneWeightII(int[] stones) {
int sum = 0;
for (int s : stones) {
sum += s;
}

int target = sum / 2;
//初始化,dp[i][j]为可以放0-i物品,背包容量为j的情况下背包中的最大价值
int[][] dp = new int[stones.length][target + 1];
//dp[i][0]默认初始化为0
//dp[0][j]取决于stones[0]
for (int j = stones[0]; j <= target; j++) {
dp[0][j] = stones[0];
}

for (int i = 1; i < stones.length; i++) {
for (int j = 1; j <= target; j++) {//注意是等于
if (j >= stones[i]) {
//不放:dp[i - 1][j] 放:dp[i - 1][j - stones[i]] + stones[i]
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - stones[i]] + stones[i]);
} else {
dp[i][j] = dp[i - 1][j];
}
}
}

System.out.println(dp[stones.length - 1][target]);
return (sum - dp[stones.length - 1][target]) - dp[stones.length - 1][target];
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public int lastStoneWeightII(int[] stones) {
int sum = 0;
for (int i : stones) {
sum += i;
}
int target = sum >> 1;
//初始化dp数组
int[] dp = new int[target + 1];
for (int i = 0; i < stones.length; i++) {
//采用倒序
for (int j = target; j >= stones[i]; j--) {
//两种情况,要么放,要么不放
dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);
}
}
return sum - 2 * dp[target];
}
}

494.目标和※

建议

题目链接: https://leetcode.cn/problems/target-sum/
文章讲解: https://programmercarl.com/0494.%E7%9B%AE%E6%A0%87%E5%92%8C.html
视频讲解: https://www.bilibili.com/video/BV1o8411j73x/

题目分析


方案一:回溯

简单粗暴,比较容易想到。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {

private int result = 0;
public int findTargetSumWays(int[] nums, int target) {
backtracking(nums, target, 0, 0);
return result;
}

private void backtracking(int[] nums, int target, int start, int sum) {
if (nums.length == start) {
if (target == sum) result++;
return;
}

backtracking(nums, target, start + 1, sum + nums[start]);
backtracking(nums, target, start + 1, sum - nums[start]);
}
}

结果

解答成功:
执行耗时:513 ms,击败了22.50% 的Java用户
内存消耗:38.8 MB,击败了98.60% 的Java用户

分析

时间复杂度:
O( 2 ^ n )

空间复杂度:
O( 1 )

方案二:动态规划

太难想到其可以和 01背包 问题打上交道,还需要积累经验。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public int findTargetSumWays(int[] nums, int target) {


int sum = Arrays.stream(nums).sum();

if ((sum + target) % 2 == 1 || sum < -target) return 0;
int flag = Math.abs((sum + target) / 2);

int[] dp = new int[flag + 1];

dp[0] = 1;

for (int i = 0; i < nums.length; i++) {
for (int j = flag; j >= nums[i]; j--) {
dp[j] += dp[j - nums[ ]];
}
}
return dp[flag];
}
}

结果

解答成功:
执行耗时:3 ms,击败了64.63% 的Java用户
内存消耗:39.1 MB,击败了69.44% 的Java用户

分析

时间复杂度:
O( n × m )

空间复杂度:
O( m )

代码随想录

https://programmercarl.com/0494.%E7%9B%AE%E6%A0%87%E5%92%8C.html

思路

这道题目咋眼一看和动态规划背包啥的也没啥关系。

本题要如何使表达式结果为target,

既然为target,那么就一定有 left组合 - right组合 = target。

left + right = sum,而sum是固定的。right = sum - left

公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2

target是固定的,sum是固定的,left就可以求出来。

此时问题就是在集合nums中找出和为left的组合。

回溯算法

组合总和问题

此时可以套组合总和的回溯法代码,几乎不用改动。

当然,也可以转变成序列区间选+ 或者 -,使用回溯法,那就是另一个解法。

我也把代码给出来吧,大家可以了解一下,回溯的解法,以下是本题转变为组合总和问题的回溯法代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
if (sum == target) {
result.push_back(path);
}
// 如果 sum + candidates[i] > target 就终止遍历
for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
sum += candidates[i];
path.push_back(candidates[i]);
backtracking(candidates, target, sum, i + 1);
sum -= candidates[i];
path.pop_back();

}
}
public:
int findTargetSumWays(vector<int>& nums, int S) {
int sum = 0;
for (int i = 0; i < nums.size(); i++) sum += nums[i];
if (S > sum) return 0; // 此时没有方案
if ((S + sum) % 2) return 0; // 此时没有方案,两个int相加的时候要各位小心数值溢出的问题
int bagSize = (S + sum) / 2; // 转变为组合总和问题,bagsize就是要求的和

// 以下为回溯法代码
result.clear();
path.clear();
sort(nums.begin(), nums.end()); // 需要排序
backtracking(nums, bagSize, 0, 0);
return result.size();
}
};

当然以上代码超时了。

也可以使用记忆化回溯,但这里我就不在回溯上下功夫了,直接看动规

动态规划

如何转化为01背包问题呢。

假设加法的总和为x,那么减法对应的总和就是sum - x。

所以我们要求的是 x - (sum - x) = target

x = (target + sum) / 2

此时问题就转化为,装满容量为x的背包,有几种方法

这里的x,就是bagSize,也就是我们后面要求的背包容量。

大家看到(target + sum) / 2 应该担心计算的过程中向下取整有没有影响。

这么担心就对了,例如sum 是5,S是2的话其实就是无解的,所以:

1
2
(C++代码中,输入的S 就是题目描述的 target)
if ((S + sum) % 2 == 1) return 0; // 此时没有方案

同时如果 S 的绝对值已经大于sum,那么也是没有方案的。

1
2
(C++代码中,输入的S 就是题目描述的 target)
if (abs(S) > sum) return 0; // 此时没有方案

再回归到01背包问题,为什么是01背包呢?

因为每个物品(题目中的1)只用一次!

这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。

本题则是装满有几种方法。其实这就是一个组合问题了。

  1. 确定dp数组以及下标的含义

dp[j] 表示:填满 j(包括j)这么大容积的包,有dp[j]种方法

其实也可以使用二维dp数组来求解本题,dp[i][j]:使用 下标为[0, i]的nums[i]能够凑满j(包括j)这么大容量的包,有dp[i][j]种方法。

下面我都是统一使用一维数组进行讲解, 二维降为一维(滚动数组),其实就是上一层拷贝下来。

  1. 确定递推公式

有哪些来源可以推出dp[j]呢?

只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。

例如:dp[j],j 为5,

  • 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
  • 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
  • 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
  • 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
  • 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包

那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。

所以求组合类问题的公式,都是类似这种:

1
dp[j] += dp[j - nums[i]]

这个公式在后面在讲解背包解决排列组合问题的时候还会用到!

  1. dp数组如何初始化

从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。

这里有录友可能认为从dp数组定义来说 dp[0] 应该是0,也有录友认为dp[0]应该是1。

其实不要硬去解释它的含义,咱就把 dp[0]的情况带入本题看看应该等于多少。

如果数组[0] ,target = 0,那么 bagSize = (target + sum) / 2 = 0。 dp[0]也应该是1, 也就是说给数组里的元素 0 前面无论放加法还是减法,都是 1 种方法。

所以本题我们应该初始化 dp[0] 为 1。

可能有同学想了,那 如果是 数组[0,0,0,0,0] target = 0 呢。

其实 此时最终的dp[0] = 32,也就是这五个零 子集的所有组合情况,但此dp[0]非彼dp[0],dp[0]能算出32,其基础是因为dp[0] = 1 累加起来的。

dp[j]其他下标对应的数值也应该初始化为0,从递推公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来。

  1. 确定遍历顺序

对于01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序。

  1. 举例推导dp数组

输入:nums: [1, 1, 1, 1, 1], S: 3

bagSize = (S + sum) / 2 = (3 + 5) / 2 = 4

dp数组状态变化如下:

C++代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int S) {
int sum = 0;
for (int i = 0; i < nums.size(); i++) sum += nums[i];
if (abs(S) > sum) return 0; // 此时没有方案
if ((S + sum) % 2 == 1) return 0; // 此时没有方案
int bagSize = (S + sum) / 2;
vector<int> dp(bagSize + 1, 0);
dp[0] = 1;
for (int i = 0; i < nums.size(); i++) {
for (int j = bagSize; j >= nums[i]; j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[bagSize];
}
};

  • 时间复杂度:O(n × m),n为正数个数,m为背包容量
  • 空间复杂度:O(m),m为背包容量

本题还是有点难度,大家也可以记住,在求装满背包有几种方法的情况下,递推公式一般为:

1
dp[j] += dp[j - nums[i]];

后面我们在讲解完全背包的时候,还会用到这个递推公式!

代码实现

易于理解的二维数组版本:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
class Solution {
public int findTargetSumWays(int[] nums, int target) {

// 01背包应用之“有多少种不同的填满背包最大容量的方法“
// 易于理解的二维数组解法及详细注释

int sum = 0;
for(int i = 0; i < nums.length; i++) {
sum += nums[i];
}

// 注意nums[i] >= 0的题目条件,意味着sum也是所有nums[i]的绝对值之和
// 这里保证了sum + target一定是大于等于零的,也就是left大于等于零(毕竟我们定义left大于right)
if(sum < Math.abs(target)){
return 0;
}

// 利用二元一次方程组将left用target和sum表示出来(替换掉right组合),详见代码随想录对此题的分析
// 如果所求的left数组和为小数,则作为整数数组的nums里的任何元素自然是没有办法凑出这个小数的
if((sum + target) % 2 != 0) {
return 0;
}

int left = (sum + target) / 2;

// dp[i][j]:遍历到数组第i个数时, left为j时的能装满背包的方法总数
int[][] dp = new int[nums.length][left + 1];

// 初始化最上行(dp[0][j]),当nums[0] == j时(注意nums[0]和j都一定是大于等于零的,因此不需要判断等于-j时的情况),有唯一一种取法可取到j,dp[0][j]此时等于1
// 其他情况dp[0][j] = 0
// java整数数组默认初始值为0
for(int j = 0; j <= left; j++) {
if(nums[0] == j) {
dp[0][j] = 1;
}
}

// 初始化最左列(dp[i][0])
// 当从nums数组的索引0到i的部分有n个0时(n > 0),每个0可以取+/-,因此有2的n次方中可以取到j = 0的方案
// n = 0说明当前遍历到的数组部分没有0全为正数,因此只有一种方案可以取到j = 0(就是所有数都不取)
int numZeros = 0;
for(int i = 0; i < nums.length; i++) {
if(nums[i] == 0) {
numZeros++;
}
dp[i][0] = (int) Math.pow(2, numZeros);

}

// 递推公式分析:
// 当nums[i] > j时,这时候nums[i]一定不能取,所以是dp[i - 1][j]种方案数
// nums[i] <= j时,num[i]可取可不取,因此方案数是dp[i - 1][j] + dp[i - 1][j - nums[i]]
// 由递推公式可知,先遍历i或j都可
for(int i = 1; i < nums.length; i++) {
for(int j = 1; j <= left; j++) {
if(nums[i] > j) {
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j] + dp[i - 1][j - nums[i]];
}
}
}

// 打印dp数组
// for(int i = 0; i < nums.length; i++) {
// for(int j = 0; j <= left; j++) {
// System.out.print(dp[i][j] + " ");
// }
// System.out.println("");
// }

return dp[nums.length - 1][left];

}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public int findTargetSumWays(int[] nums, int target) {
int sum = 0;
for (int i = 0; i < nums.length; i++) sum += nums[i];
//如果target过大 sum将无法满足
if ( target < 0 && sum < -target) return 0;
if ((target + sum) % 2 != 0) return 0;
int size = (target + sum) / 2;
if(size < 0) size = -size;
int[] dp = new int[size + 1];
dp[0] = 1;
for (int i = 0; i < nums.length; i++) {
for (int j = size; j >= nums[i]; j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[size];
}
}

474.一和零※

建议

题目链接: https://leetcode.cn/problems/ones-and-zeroes/
文章讲解: https://programmercarl.com/0474.%E4%B8%80%E5%92%8C%E9%9B%B6.html
视频讲解:

题目分析


方案一

此问题想起来和01背包问题很相似,但是去滚动数组似乎需要升维,将一维升为二维

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {  
public int findMaxForm(String[] strs, int m, int n) {
int[][] dp = new int[m + 1][n + 1];

for (int i = 0; i < strs.length; i++) {
String str = strs[i];
int num0 = 0, num1 = 0;
for (int j = 0; j < str.length(); j++) { // 统计0和1的数量
if ('0'== str.charAt(j)) num0++;
else num1++;
}
for (int j = m; j >= num0; j--) { // dp的核心逻辑
for (int k = n; k >= num1; k--) {
dp[j][k] = Math.max(dp[j][k], dp[j - num0][k - num1] + 1); // 传递函数
}
}
}
return dp[m][n];
}
}

结果

解答成功:
执行耗时:21 ms,击败了55.43% 的Java用户
内存消耗:39.5 MB,击败了84.92% 的Java用户

分析

时间复杂度:
O( n * m * lenth * strLength )

空间复杂度:
O( n * m )

代码随想录

https://programmercarl.com/0474.%E4%B8%80%E5%92%8C%E9%9B%B6.html

思路

这道题目,还是比较难的,也有点像程序员自己给自己出个脑筋急转弯,程序员何苦为难程序员呢。

来说题,本题不少同学会认为是多重背包,一些题解也是这么写的。

其实本题并不是多重背包,再来看一下这个图,捋清几种背包的关系

多重背包是每个物品,数量不同的情况。

本题中strs 数组里的元素就是物品,每个物品都是一个!

而m 和 n相当于是一个背包,两个维度的背包

理解成多重背包的同学主要是把m和n混淆为物品了,感觉这是不同数量的物品,所以以为是多重背包。

但本题其实是01背包问题!

只不过这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品。

开始动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

**dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]**。

  1. 确定递推公式

dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。

dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。

然后我们在遍历的过程中,取dp[i][j]的最大值。

所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);

此时大家可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。

这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。

  1. dp数组如何初始化

01背包的dp数组初始化为0就可以。

因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。

  1. 确定遍历顺序

01背包一般是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!

那么本题也是,物品就是strs里的字符串,背包容量就是题目描述中的m和n。

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
for (string str : strs) { // 遍历物品
int oneNum = 0, zeroNum = 0;
for (char c : str) {
if (c == '0') zeroNum++;
else oneNum++;
}
for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!
for (int j = n; j >= oneNum; j--) {
dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
}
}
}

有同学可能想,那个遍历背包容量的两层for循环先后循序有没有什么讲究?

没讲究,都是物品重量的一个维度,先遍历哪个都行!

  1. 举例推导dp数组

以输入:[“10”,”0001”,”111001”,”1”,”0”],m = 3,n = 3为例

最后dp数组的状态如下所示:

以上动规五部曲分析完毕,C++代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
vector<vector<int>> dp(m + 1, vector<int> (n + 1, 0)); // 默认初始化0
for (string str : strs) { // 遍历物品
int oneNum = 0, zeroNum = 0;
for (char c : str) {
if (c == '0') zeroNum++;
else oneNum++;
}
for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!
for (int j = n; j >= oneNum; j--) {
dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
}
}
}
return dp[m][n];
}
};
  • 时间复杂度: O(kmn),k 为strs的长度
  • 空间复杂度: O(mn)

总结

不少同学刷过这道题,可能没有总结这究竟是什么背包。

此时我们讲解了0-1背包的多种应用,

  • 纯 0 - 1 背包 是求 给定背包容量 装满背包 的最大价值是多少。
    1. 分割等和子集 是求 给定背包容量,能不能装满这个背包。
    1. 最后一块石头的重量 II 是求 给定背包容量,尽可能装,最多能装多少
    1. 目标和  是求 给定背包容量,装满背包有多少种方法。
  • 本题是求 给定背包容量,装满背包最多有多少个物品。

所以在代码随想录中所列举的题目,都是 0-1背包不同维度上的应用,大家可以细心体会!

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public int findMaxForm(String[] strs, int m, int n) {
//dp[i][j]表示i个0和j个1时的最大子集
int[][] dp = new int[m + 1][n + 1];
int oneNum, zeroNum;
for (String str : strs) {
oneNum = 0;
zeroNum = 0;
for (char ch : str.toCharArray()) {
if (ch == '0') {
zeroNum++;
} else {
oneNum++;
}
}
//倒序遍历
for (int i = m; i >= zeroNum; i--) {
for (int j = n; j >= oneNum; j--) {
dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
}
}
}
return dp[m][n];
}
}

38、第九章 动态规划part05
http://yuanql.top/2023/08/15/02_1_代码随想录算法训练营18期/38、第九章 动态规划part05/
作者
Qingli Yuan
发布于
2023年8月15日
许可协议