37、第九章 动态规划part04

本节内容

  • 01背包理论基础
    1. 分割等和子集

01背包理论基础※

文章讲解1: https://programmercarl.com/%E8%83%8C%E5%8C%85%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%8001%E8%83%8C%E5%8C%85-1.html
文章讲解2: https://programmercarl.com/%E8%83%8C%E5%8C%85%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%8001%E8%83%8C%E5%8C%85-2.html

完全背包和组合背包都是从01背包进化过来的

思路

背包问题的经典资料当然是:背包九讲。

github下载链接
原作者github指路
# 背包九讲——全篇详细理解与代码实现

对于面试的话,其实掌握01背包,和完全背包,就够用了,最多可以再来一个多重背包。

如果这几种背包,分不清,可以参考下图:

至于背包九讲其其他背包,面试几乎不会问,都是竞赛级别的了,leetcode上连多重背包的题目都没有,所以题库也告诉我们,01背包和完全背包就够用了。

而完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。

所以背包问题的理论基础重中之重是01背包,一定要理解透!

leetcode上没有纯01背包的问题,都是01背包应用方面的题目,也就是需要转化为01背包问题。

所以先通过纯01背包问题,把01背包原理讲清楚,后续再讲解leetcode题目的时候,重点就是讲解如何转化为01背包问题了

具体内容请参考代码随想录。

怎么确定这个题的解可以用01背包的方式来解呢:多个物品, 有容量限制, 选or不选

dp[i - 1][j - weight[i]] + value[i]这里,为什么是用j - weight[i]来表示不放物品i的最大价值?不放物品i时的背包容量不一定是j - weight[i]啊,可能是小于这个数

  • 回答:dp本身的含义就包含了最优,也就是说j-weight也包含了比它小的重量中所有情况中最优的那一种

一维优化不能先遍历容量的原因:主要是  一维的话 上一层的状态没法保存,已经被本层更新了

01背包二维数组转一维数组:个人认为应该是和初始化有关,因为是dp i 是和i-1相关,所以正序的话相当于一直在叠加前一项,如果反过来倒序的话,每个前面都是初始化的0所以没有叠加问题

416. 分割等和子集※

建议

题目链接: https://leetcode.cn/problems/partition-equal-subset-sum/
文章讲解: https://programmercarl.com/0416.%E5%88%86%E5%89%B2%E7%AD%89%E5%92%8C%E5%AD%90%E9%9B%86.html
视频讲解:

题目分析

方案一:01背包

成功AC了,但是我没有想明白其为什么可以正常AC。不明白为什么通过求取其最大值就能找到target参数。

强烈建议看一下此文章最后的java代码实现。其使用了一个boolean型的数组,有利于对此题目(方案)的理解,看完之后差不多明白为什么可以通过01背包的模板解决此问题了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public boolean canPartition(int[] nums) {
int sum = Arrays.stream(nums).sum();
if (sum % 2 == 1) return false;

int mid = sum / 2;
int[][] dp = new int[nums.length][mid + 1];

if (nums[0] == mid) return true;
for (int i = nums[0]; i < mid + 1; i++) {
dp[0][i] = nums[0];
}

for (int i = 1; i < nums.length; i++) {
for (int j = 1; j < mid + 1; j++) {
if (j < nums[i]) dp[i][j] = dp[i - 1][j];
else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - nums[i]] + nums[i]);
}

if (dp[i][j] == mid) return true;
}
}

return false;
}
}

结果

解答成功:
执行耗时:35 ms,击败了36.11% 的Java用户
内存消耗:54.5 MB,击败了11.41% 的Java用户

分析

时间复杂度:
O( n * sum( nums ) )

空间复杂度:
O( n * sum( nums ) )

方案二:01背包(滚动数组)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public boolean canPartition(int[] nums) {
int sum = Arrays.stream(nums).sum();
if (sum % 2 == 1) return false;

int mid = sum / 2;
int[] dp1 = new int[mid + 1];

if (nums[0] == mid) return true;
for (int i = nums[0]; i < mid + 1; i++) {
dp1[i] = nums[0];
}

for (int i = 1; i < nums.length; i++) {
for (int j = mid; j >= nums[i]; j--) {

dp1[j] = Math.max(dp1[j], dp1[j - nums[i]] + nums[i]);

if (dp1[j] == mid) return true;
}
}

return false;
}
}

结果

解答成功:
执行耗时:22 ms,击败了89.41% 的Java用户
内存消耗:40.3 MB,击败了71.57% 的Java用户

分析

时间复杂度:
O( n * sum( nums ) )

空间复杂度:
O( sum( nums ) )

代码随想录

https://programmercarl.com/0416.%E5%88%86%E5%89%B2%E7%AD%89%E5%92%8C%E5%AD%90%E9%9B%86.html

思路

这道题目初步看,和如下两题几乎是一样的,大家可以用回溯法,解决如下两题

  • 698.划分为k个相等的子集
  • 473.火柴拼正方形

这道题目是要找是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

那么只要找到集合里能够出现 sum / 2 的子集总和,就算是可以分割成两个相同元素和子集了。

本题是可以用回溯暴力搜索出所有答案的,但最后超时了,也不想再优化了,放弃回溯,直接上01背包吧。

01背包问题

背包问题,大家都知道,有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

背包问题有多种背包方式,常见的有:01背包、完全背包、多重背包、分组背包和混合背包等等。

要注意题目描述中商品是不是可以重复放入。

即一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。

要明确本题中我们要使用的是01背包,因为元素我们只能用一次。

回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。

那么来一一对应一下本题,看看背包问题如何来解决。

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

以上分析完,我们就可以套用01背包,来解决这个问题了。

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义

01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。

本题中每一个元素的数值既是重量,也是价值。

**套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]**。

那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。

有录友可能想,那还有装不满的时候?

拿输入数组 [1, 5, 11, 5],举例, dp[7] 只能等于 6,因为 只能放进 1 和 5。

而dp[6] 就可以等于6了,放进1 和 5,那么dp[6] == 6,说明背包装满了。

  1. 确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。

所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

  1. dp数组如何初始化

在01背包,一维dp如何初始化,已经讲过,

从dp[j]的定义来看,首先dp[0]一定是0。

如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。

这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了

本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。

代码如下:

1
2
3
// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
vector<int> dp(10001, 0);
  1. 确定遍历顺序

如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

代码如下:

1
2
3
4
5
6
// 开始 01背包
for(int i = 0; i < nums.size(); i++) {
for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
}
}
  1. 举例推导dp数组

dp[j]的数值一定是小于等于j的。

如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。

用例1,输入[1,5,11,5] 为例,如图:

最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。

综上分析完毕,C++代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution {
public:
bool canPartition(vector<int>& nums) {
int sum = 0;

// dp[i]中的i表示背包内总和
// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
vector<int> dp(10001, 0);
for (int i = 0; i < nums.size(); i++) {
sum += nums[i];
}
// 也可以使用库函数一步求和
// int sum = accumulate(nums.begin(), nums.end(), 0);
if (sum % 2 == 1) return false;
int target = sum / 2;

// 开始 01背包
for(int i = 0; i < nums.size(); i++) {
for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
}
}
// 集合中的元素正好可以凑成总和target
if (dp[target] == target) return true;
return false;
}
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n),虽然dp数组大小为一个常数,但是大常数

这道题目就是一道01背包应用类的题目,需要我们拆解题目,然后套入01背包的场景。

01背包相对于本题,主要要理解,题目中物品是nums[i],重量是nums[i],价值也是nums[i],背包体积是sum/2。

看代码的话,就可以发现,基本就是按照01背包的写法来的。

代码实现

二维数组版本(易于理解):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
public class Solution {
public static void main(String[] args) {
int num[] = {1,5,11,5};
canPartition(num);

}
public static boolean canPartition(int[] nums) {
int len = nums.length;
// 题目已经说非空数组,可以不做非空判断
int sum = 0;
for (int num : nums) {
sum += num;
}
// 特判:如果是奇数,就不符合要求
if ((sum %2 ) != 0) {
return false;
}

int target = sum / 2; //目标背包容量
// 创建二维状态数组,行:物品索引,列:容量(包括 0)
/*
dp[i][j]表示从数组的 [0, i] 这个子区间内挑选一些正整数
每个数只能用一次,使得这些数的和恰好等于 j。
*/
boolean[][] dp = new boolean[len][target + 1];

// 先填表格第 0 行,第 1 个数只能让容积为它自己的背包恰好装满 (这里的dp[][]数组的含义就是“恰好”,所以就算容积比它大的也不要)
if (nums[0] <= target) {
dp[0][nums[0]] = true;
}
// 再填表格后面几行
//外层遍历物品
for (int i = 1; i < len; i++) {
//内层遍历背包
for (int j = 0; j <= target; j++) {
// 直接从上一行先把结果抄下来,然后再修正
dp[i][j] = dp[i - 1][j];

//如果某个物品单独的重量恰好就等于背包的重量,那么也是满足dp数组的定义的
if (nums[i] == j) {
dp[i][j] = true;
continue;
}
//如果某个物品的重量小于j,那就可以看该物品是否放入背包
//dp[i - 1][j]表示该物品不放入背包,如果在 [0, i - 1] 这个子区间内已经有一部分元素,使得它们的和为 j ,那么 dp[i][j] = true;
//dp[i - 1][j - nums[i]]表示该物品放入背包。如果在 [0, i - 1] 这个子区间内就得找到一部分元素,使得它们的和为 j - nums[i]。
if (nums[i] < j) {
dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i]];
}
}
}
for (int i = 0; i < len; i++) {
for (int j = 0; j <= target; j++) {
System.out.print(dp[i][j]+" ");
}
System.out.println();
}
return dp[len - 1][target];
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public boolean canPartition(int[] nums) {
if(nums == null || nums.length == 0) return false;
int n = nums.length;
int sum = 0;
for(int num : nums) {
sum += num;
}
//总和为奇数,不能平分
if(sum % 2 != 0) return false;
int target = sum / 2;
int[] dp = new int[target + 1];
for(int i = 0; i < n; i++) {
for(int j = target; j >= nums[i]; j--) {
//物品 i 的重量是 nums[i],其价值也是 nums[i]
dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);
}

//剪枝一下,每一次完成內層的for-loop,立即檢查是否dp[target] == target,優化時間複雜度(26ms -> 20ms)
if(dp[target] == target)
return true;
}
return dp[target] == target;
}
}

37、第九章 动态规划part04
http://yuanql.top/2023/08/15/02_1_代码随想录算法训练营18期/37、第九章 动态规划part04/
作者
Qingli Yuan
发布于
2023年8月15日
许可协议