33、第八章 贪心算法part06

本节内容

  • 738.单调递增的数字
  • 968.监控二叉树
  • 总结

738.单调递增的数字※

建议

题目链接: https://leetcode.cn/problems/monotone-increasing-digits/
文章讲解: https://programmercarl.com/0738.%E5%8D%95%E8%B0%83%E9%80%92%E5%A2%9E%E7%9A%84%E6%95%B0%E5%AD%97.html
视频讲解:

题目分析



方案一

相等的时候需要进行一下特殊的判断

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class Solution {
public int monotoneIncreasingDigits(int n) {
int index = 0; // 记录当前在数字的哪一位,从0开始计数
int result = n % 10; // 保存结果
int up = n % 10; // 记录上一次的数值大小
boolean flag = false; // 需要特殊判断的是 3332 其结果为 2999;为了判断其相等的时候,添加的一个标志位
n = n / 10;

while (n > 0) {
int i = n % 10;
index++;

if (i < up) {
result += i * Math.pow(10, index);
flag = false;
} else if (i == up) { // 相等的时候进行一下特殊的判断
if (flag) {
result = i * (int) Math.pow(10, index) - 1;
}else {
result += i * Math.pow(10, index);
}
}else {
result = i * (int) Math.pow(10, index) - 1;
flag = true;
}
up = i;
n = n / 10;
}

return result;
}
}

结果

解答成功:
执行耗时:0 ms,击败了100.00% 的Java用户
内存消耗:38.3 MB,击败了75.23% 的Java用户

分析

时间复杂度:
O( n )

空间复杂度:
O( 1 )

代码随想录

https://programmercarl.com/0738.%E5%8D%95%E8%B0%83%E9%80%92%E5%A2%9E%E7%9A%84%E6%95%B0%E5%AD%97.html

暴力解法

题意很简单,那么首先想的就是暴力解法了,来我替大家暴力一波,结果自然是超时!

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
private:
// 判断一个数字的各位上是否是递增
bool checkNum(int num) {
int max = 10;
while (num) {
int t = num % 10;
if (max >= t) max = t;
else return false;
num = num / 10;
}
return true;
}
public:
int monotoneIncreasingDigits(int N) {
for (int i = N; i > 0; i--) { // 从大到小遍历
if (checkNum(i)) return i;
}
return 0;
}
};
  • 时间复杂度:O(n × m) m为n的数字长度
  • 空间复杂度:O(1)

贪心算法

题目要求小于等于N的最大单调递增的整数,那么拿一个两位的数字来举例。

例如:98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]–,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。

这一点如果想清楚了,这道题就好办了。

此时是从前向后遍历还是从后向前遍历呢?

从前向后遍历的话,遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]减一,但此时如果strNum[i - 1]减一了,可能又小于strNum[i - 2]。

这么说有点抽象,举个例子,数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。

那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299

确定了遍历顺序之后,那么此时局部最优就可以推出全局,找不出反例,试试贪心。

C++代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
int monotoneIncreasingDigits(int N) {
string strNum = to_string(N);
// flag用来标记赋值9从哪里开始
// 设置为这个默认值,为了防止第二个for循环在flag没有被赋值的情况下执行
int flag = strNum.size();
for (int i = strNum.size() - 1; i > 0; i--) {
if (strNum[i - 1] > strNum[i] ) {
flag = i;
strNum[i - 1]--;
}
}
for (int i = flag; i < strNum.size(); i++) {
strNum[i] = '9';
}
return stoi(strNum);
}
};
  • 时间复杂度:O(n),n 为数字长度
  • 空间复杂度:O(n),需要一个字符串,转化为字符串操作更方便

总结

本题只要想清楚个例,例如98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]减一,strNum[i]赋值9,这样这个整数就是89。就可以很自然想到对应的贪心解法了。

想到了贪心,还要考虑遍历顺序,只有从后向前遍历才能重复利用上次比较的结果。

最后代码实现的时候,也需要一些技巧,例如用一个flag来标记从哪里开始赋值9。

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// 版本1
class Solution {
public int monotoneIncreasingDigits(int N) {
String[] strings = (N + "").split("");
int start = strings.length;
for (int i = strings.length - 1; i > 0; i--) {
if (Integer.parseInt(strings[i]) < Integer.parseInt(strings[i - 1])) {
strings[i - 1] = (Integer.parseInt(strings[i - 1]) - 1) + "";
start = i;
}
}
for (int i = start; i < strings.length; i++) {
strings[i] = "9";
}
return Integer.parseInt(String.join("",strings));
}
}

java版本1中创建了String数组,多次使用Integer.parseInt了方法,这导致不管是耗时还是空间占用都非常高,用时12ms,下面提供一个版本在char数组上原地修改,用时1ms的版本

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// 版本2
class Solution {
public int monotoneIncreasingDigits(int n) {
String s = String.valueOf(n);
char[] chars = s.toCharArray();
int start = s.length();
for (int i = s.length() - 2; i >= 0; i--) {
if (chars[i] > chars[i + 1]) {
chars[i]--;
start = i+1;
}
}
for (int i = start; i < s.length(); i++) {
chars[i] = '9';
}
return Integer.parseInt(String.valueOf(chars));
}
}

968.监控二叉树※

建议

题目链接: https://leetcode.cn/problems/binary-tree-cameras/
文章讲解: https://programmercarl.com/0968.%E7%9B%91%E6%8E%A7%E4%BA%8C%E5%8F%89%E6%A0%91.html
视频讲解:

题目分析




方案一

不看代码随想录 的题解真的没想到,方法十分巧妙,具有解题思路见下方:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class Solution {  

private int result = 0;

public int minCameraCover(TreeNode root) {

if (recursion(root) == 0) result++;

return result;
}

/**
* * @param root
* @return 0: 无覆盖;1:此处为摄像头;2:有覆盖
*/
private int recursion(TreeNode root) {
if (root == null) return 2;

int left = recursion(root.left);
int right = recursion(root.right);

if (right == 0 || left == 0){
result++;
return 1;
} else if (left == 1 || right == 1) {
return 2;
} else
return 0;
}
}

结果

解答成功:
执行耗时:0 ms,击败了100.00% 的Java用户
内存消耗:40.4 MB,击败了94.51% 的Java用户

分析

时间复杂度:
O( n )

空间复杂度:
O( n )

代码随想录

https://programmercarl.com/0968.%E7%9B%91%E6%8E%A7%E4%BA%8C%E5%8F%89%E6%A0%91.html

思路

这道题目首先要想,如何放置,才能让摄像头最小的呢?

从题目中示例,其实可以得到启发,我们发现题目示例中的摄像头都没有放在叶子节点上!

这是很重要的一个线索,摄像头可以覆盖上中下三层,如果把摄像头放在叶子节点上,就浪费的一层的覆盖。

所以把摄像头放在叶子节点的父节点位置,才能充分利用摄像头的覆盖面积。

那么有同学可能问了,为什么不从头结点开始看起呢,为啥要从叶子节点看呢?

因为头结点放不放摄像头也就省下一个摄像头, 叶子节点放不放摄像头省下了的摄像头数量是指数阶别的。

所以我们要从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!

局部最优推出全局最优,找不出反例,那么就按照贪心来!

此时,大体思路就是从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。

此时这道题目还有两个难点:

  1. 二叉树的遍历
  2. 如何隔两个节点放一个摄像头

确定遍历顺序

在二叉树中如何从低向上推导呢?

可以使用后序遍历也就是左右中的顺序,这样就可以在回溯的过程中从下到上进行推导了。

后序遍历代码如下:

1
2
3
4
5
6
7
8
9
10
11
int traversal(TreeNode* cur) {

// 空节点,该节点有覆盖
if (终止条件) return ;

int left = traversal(cur->left); // 左
int right = traversal(cur->right); // 右

逻辑处理 // 中
return ;
}

注意在以上代码中我们取了左孩子的返回值,右孩子的返回值,即left 和 right, 以后推导中间节点的状态。

如何隔两个节点放一个摄像头

此时需要状态转移的公式,大家不要和动态的状态转移公式混到一起,本题状态转移没有择优的过程,就是单纯的状态转移!

来看看这个状态应该如何转移,先来看看每个节点可能有几种状态:

有如下三种:

  • 该节点无覆盖
  • 本节点有摄像头
  • 本节点有覆盖

我们分别有三个数字来表示:

  • 0:该节点无覆盖
  • 1:本节点有摄像头
  • 2:本节点有覆盖

大家应该找不出第四个节点的状态了。

一些同学可能会想有没有第四种状态:本节点无摄像头,其实无摄像头就是 无覆盖 或者 有覆盖的状态,所以一共还是三个状态。

因为在遍历树的过程中,就会遇到空节点,那么问题来了,空节点究竟是哪一种状态呢? 空节点表示无覆盖? 表示有摄像头?还是有覆盖呢?

回归本质,为了让摄像头数量最少,我们要尽量让叶子节点的父节点安装摄像头,这样才能摄像头的数量最少。

那么空节点不能是无覆盖的状态,这样叶子节点就要放摄像头了,空节点也不能是有摄像头的状态,这样叶子节点的父节点就没有必要放摄像头了,而是可以把摄像头放在叶子节点的爷爷节点上。

所以空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了

接下来就是递推关系。

那么递归的终止条件应该是遇到了空节点,此时应该返回2(有覆盖),原因上面已经解释过了。

代码如下:

1
2
// 空节点,该节点有覆盖
if (cur == NULL) return 2;

递归的函数,以及终止条件已经确定了,再来看单层逻辑处理。

主要有如下四类情况:

  • 情况1:左右节点都有覆盖

左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。

如图:

代码如下:

1
2
// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;
  • 情况2:左右节点至少有一个无覆盖的情况

如果是以下情况,则中间节点(父节点)应该放摄像头:

  • left == 0 && right == 0 左右节点无覆盖
  • left == 1 && right == 0 左节点有摄像头,右节点无覆盖
  • left == 0 && right == 1 左节点有无覆盖,右节点摄像头
  • left == 0 && right == 2 左节点无覆盖,右节点覆盖
  • left == 2 && right == 0 左节点覆盖,右节点无覆盖

这个不难理解,毕竟有一个孩子没有覆盖,父节点就应该放摄像头。

此时摄像头的数量要加一,并且return 1,代表中间节点放摄像头。

代码如下:

1
2
3
4
if (left == 0 || right == 0) {
result++;
return 1;
}
  • 情况3:左右节点至少有一个有摄像头

如果是以下情况,其实就是 左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)

  • left == 1 && right == 2 左节点有摄像头,右节点有覆盖
  • left == 2 && right == 1 左节点有覆盖,右节点有摄像头
  • left == 1 && right == 1 左右节点都有摄像头

代码如下:

1
if (left == 1 || right == 1) return 2;

从这个代码中,可以看出,如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了,如图:

这种情况也是大多数同学容易迷惑的情况。

  • 情况4:头结点没有覆盖

以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况,如图:

所以递归结束之后,还要判断根节点,如果没有覆盖,result++,代码如下:

1
2
3
4
5
6
7
int minCameraCover(TreeNode* root) {
result = 0;
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}
  • 时间复杂度: O(n),需要遍历二叉树上的每个节点
  • 空间复杂度: O(n)

总结

本题的难点首先是要想到贪心的思路,然后就是遍历和状态推导。

在二叉树上进行状态推导,其实难度就上了一个台阶了,需要对二叉树的操作非常娴熟。

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
class Solution {
int res=0;
public int minCameraCover(TreeNode root) {
// 对根节点的状态做检验,防止根节点是无覆盖状态 .
if(minCame(root)==0){
res++;
}
return res;
}
/**
节点的状态值:
0 表示无覆盖
1 表示 有摄像头
2 表示有覆盖
后序遍历,根据左右节点的情况,来判读 自己的状态
*/
public int minCame(TreeNode root){
if(root==null){
// 空节点默认为 有覆盖状态,避免在叶子节点上放摄像头
return 2;
}
int left=minCame(root.left);
int right=minCame(root.right);

// 如果左右节点都覆盖了的话, 那么本节点的状态就应该是无覆盖,没有摄像头
if(left==2&&right==2){
//(2,2)
return 0;
}else if(left==0||right==0){
// 左右节点都是无覆盖状态,那 根节点此时应该放一个摄像头
// (0,0) (0,1) (0,2) (1,0) (2,0)
// 状态值为 1 摄像头数 ++;
res++;
return 1;
}else{
// 左右节点的 状态为 (1,1) (1,2) (2,1) 也就是左右节点至少存在 1个摄像头,
// 那么本节点就是处于被覆盖状态
return 2;
}
}
}

总结※

https://programmercarl.com/%E8%B4%AA%E5%BF%83%E7%AE%97%E6%B3%95%E6%80%BB%E7%BB%93%E7%AF%87.html


33、第八章 贪心算法part06
http://yuanql.top/2023/08/14/02_1_代码随想录算法训练营18期/33、第八章 贪心算法part06/
作者
Qingli Yuan
发布于
2023年8月14日
许可协议