31、第八章 贪心算法part04

本节内容

  • 860.柠檬水找零
  • 406.根据身高重建队列
    1. 用最少数量的箭引爆气球

860.柠檬水找零※

建议

题目链接: https://leetcode.cn/problems/lemonade-change/
文章讲解: https://programmercarl.com/0860.%E6%9F%A0%E6%AA%AC%E6%B0%B4%E6%89%BE%E9%9B%B6.html
视频讲解:

个人方案

具体实现请见: https://www.yuanql.top/2023/07/22/02_02_leetcode_%E6%AF%8F%E6%97%A5%E4%B8%80%E9%A2%98/2023%E5%B9%B47%E6%9C%8822%E6%97%A5%E6%AF%8F%E6%97%A5%E4%B8%80%E9%A2%98--860.%20%E6%9F%A0%E6%AA%AC%E6%B0%B4%E6%89%BE%E9%9B%B6/

代码随想录

https://programmercarl.com/0860.%E6%9F%A0%E6%AA%AC%E6%B0%B4%E6%89%BE%E9%9B%B6.html

思路

这道题目刚一看,可能会有点懵,这要怎么找零才能保证完成全部账单的找零呢?

但仔细一琢磨就会发现,可供我们做判断的空间非常少!

只需要维护三种金额的数量,5,10和20。

有如下三种情况:

  • 情况一:账单是5,直接收下。
  • 情况二:账单是10,消耗一个5,增加一个10
  • 情况三:账单是20,优先消耗一个10和一个5,如果不够,再消耗三个5

此时大家就发现 情况一,情况二,都是固定策略,都不用我们来做分析了,而唯一不确定的其实在情况三。

而情况三逻辑也不复杂甚至感觉纯模拟就可以了,其实情况三这里是有贪心的。

账单是20的情况,为什么要优先消耗一个10和一个5呢?

因为美元10只能给账单20找零,而美元5可以给账单10和账单20找零,美元5更万能!

所以局部最优:遇到账单20,优先消耗美元10,完成本次找零。全局最优:完成全部账单的找零。

局部最优可以推出全局最优,并找不出反例,那么就试试贪心算法!

C++代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution {
public:
bool lemonadeChange(vector<int>& bills) {
int five = 0, ten = 0, twenty = 0;
for (int bill : bills) {
// 情况一
if (bill == 5) five++;
// 情况二
if (bill == 10) {
if (five <= 0) return false;
ten++;
five--;
}
// 情况三
if (bill == 20) {
// 优先消耗10美元,因为5美元的找零用处更大,能多留着就多留着
if (five > 0 && ten > 0) {
five--;
ten--;
twenty++; // 其实这行代码可以删了,因为记录20已经没有意义了,不会用20来找零
} else if (five >= 3) {
five -= 3;
twenty++; // 同理,这行代码也可以删了
} else return false;
}
}
return true;
}
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(1)

总结

咋眼一看好像很复杂,分析清楚之后,会发现逻辑其实非常固定。

这道题目可以告诉大家,遇到感觉没有思路的题目,可以静下心来把能遇到的情况分析一下,只要分析到具体情况了,一下子就豁然开朗了。

如果一直陷入想从整体上寻找找零方案,就会把自己陷进去,各种情况一交叉,只会越想越复杂了。

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public boolean lemonadeChange(int[] bills) {
int five = 0;
int ten = 0;

for (int i = 0; i < bills.length; i++) {
if (bills[i] == 5) {
five++;
} else if (bills[i] == 10) {
five--;
ten++;
} else if (bills[i] == 20) {
if (ten > 0) {
ten--;
five--;
} else {
five -= 3;
}
}
if (five < 0 || ten < 0) return false;
}

return true;
}
}

406.根据身高重建队列※

建议

题目链接: https://leetcode.cn/problems/queue-reconstruction-by-height/
文章讲解: https://programmercarl.com/0406.%E6%A0%B9%E6%8D%AE%E8%BA%AB%E9%AB%98%E9%87%8D%E5%BB%BA%E9%98%9F%E5%88%97.html
视频讲解:

题目分析



方案一

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public int[][] reconstructQueue(int[][] people) {
List<Integer[]> list = new LinkedList<>();
int[][] result = new int[people.length][2];


PriorityQueue<Integer[]> queue = new PriorityQueue<>((o1, o2) -> {
int i = o2[0].compareTo(o1[0]); // 身高从高向底排列
if (i != 0) return i;
return o1[1].compareTo(o2[1]); // 身高相等的时候,按照后面的数组从低向高排列
});

for (int i = 0; i < people.length; i++) {
queue.offer(new Integer[]{people[i][0], people[i][1]});
}

while (!queue.isEmpty()) {
Integer[] poll = queue.poll();
list.add(poll[1], poll);
}

for (int i = 0; i < people.length; i++) {
result[i] = new int[]{list.get(i)[0], list.get(i)[1]};
}
return result;
}
}

结果

解答成功:
执行耗时:16 ms,击败了7.18% 的Java用户
内存消耗:43.4 MB,击败了40.52% 的Java用户

分析

时间复杂度:
O( n logn ) logn为优先队列插入数据的时间复杂度

空间复杂度:
O( n )

代码随想录

https://programmercarl.com/0406.%E6%A0%B9%E6%8D%AE%E8%BA%AB%E9%AB%98%E9%87%8D%E5%BB%BA%E9%98%9F%E5%88%97.html

思路的实现和方案一很类似

思路

本题有两个维度,h和k,看到这种题目一定要想如何确定一个维度,然后再按照另一个维度重新排列。

遇到两个维度权衡的时候,一定要先确定一个维度,再确定另一个维度。

如果两个维度一起考虑一定会顾此失彼

对于本题相信大家困惑的点是先确定k还是先确定h呢,也就是究竟先按h排序呢,还是先按照k排序呢?

如果按照k来从小到大排序,排完之后,会发现k的排列并不符合条件,身高也不符合条件,两个维度哪一个都没确定下来。

那么按照身高h来排序呢,身高一定是从大到小排(身高相同的话则k小的站前面),让高个子在前面。

此时我们可以确定一个维度了,就是身高,前面的节点一定都比本节点高!

那么只需要按照k为下标重新插入队列就可以了,为什么呢?

以图中{5,2} 为例:

按照身高排序之后,优先按身高高的people的k来插入,后序插入节点也不会影响前面已经插入的节点,最终按照k的规则完成了队列。

所以在按照身高从大到小排序后:

局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性

全局最优:最后都做完插入操作,整个队列满足题目队列属性

局部最优可推出全局最优,找不出反例,那就试试贪心。

刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心,至于严格的数学证明,就不在讨论范围内了。

整个插入过程如下:

排序完的people: [[7,0], [7,1], [6,1], [5,0], [5,2],[4,4]]

插入的过程:

  • 插入[7,0]:[[7,0]]
  • 插入[7,1]:[[7,0],[7,1]]
  • 插入[6,1]:[[7,0],[6,1],[7,1]]
  • 插入[5,0]:[[5,0],[7,0],[6,1],[7,1]]
  • 插入[5,2]:[[5,0],[7,0],[5,2],[6,1],[7,1]]
  • 插入[4,4]:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]

此时就按照题目的要求完成了重新排列。

C++代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// 版本一
class Solution {
public:
static bool cmp(const vector<int>& a, const vector<int>& b) {
if (a[0] == b[0]) return a[1] < b[1];
return a[0] > b[0];
}
vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
sort (people.begin(), people.end(), cmp);
vector<vector<int>> que;
for (int i = 0; i < people.size(); i++) {
int position = people[i][1];
que.insert(que.begin() + position, people[i]);
}
return que;
}
};
  • 时间复杂度:O(nlog n + n^2)
  • 空间复杂度:O(n)

但使用vector是非常费时的,C++中vector(可以理解是一个动态数组,底层是普通数组实现的)如果插入元素大于预先普通数组大小,vector底部会有一个扩容的操作,即申请两倍于原先普通数组的大小,然后把数据拷贝到另一个更大的数组上。

所以使用vector(动态数组)来insert,是费时的,插入再拷贝的话,单纯一个插入的操作就是O(n^2)了,甚至可能拷贝好几次,就不止O(n^2)了。

改成链表之后,C++代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
// 版本二
class Solution {
public:
// 身高从大到小排(身高相同k小的站前面)
static bool cmp(const vector<int>& a, const vector<int>& b) {
if (a[0] == b[0]) return a[1] < b[1];
return a[0] > b[0];
}
vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
sort (people.begin(), people.end(), cmp);
list<vector<int>> que; // list底层是链表实现,插入效率比vector高的多
for (int i = 0; i < people.size(); i++) {
int position = people[i][1]; // 插入到下标为position的位置
std::list<vector<int>>::iterator it = que.begin();
while (position--) { // 寻找在插入位置
it++;
}
que.insert(it, people[i]);
}
return vector<vector<int>>(que.begin(), que.end());
}
};
  • 时间复杂度:O(nlog n + n^2)
  • 空间复杂度:O(n)

总结

关于出现两个维度一起考虑的情况

其技巧都是确定一边然后贪心另一边,两边一起考虑,就会顾此失彼

最后给出了两个版本的代码,可以明显看是使用C++中的list(底层链表实现)比vector(数组)效率高得多。

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public int[][] reconstructQueue(int[][] people) {
// 身高从大到小排(身高相同k小的站前面)
Arrays.sort(people, (a, b) -> {
if (a[0] == b[0]) return a[1] - b[1]; // a - b 是升序排列,故在a[0] == b[0]的狀況下,會根據k值升序排列
return b[0] - a[0]; //b - a 是降序排列,在a[0] != b[0],的狀況會根據h值降序排列
});

LinkedList<int[]> que = new LinkedList<>();

for (int[] p : people) {
que.add(p[1],p); //Linkedlist.add(index, value),會將value插入到指定index裡。
}

return que.toArray(new int[people.length][]);
}
}

452. 用最少数量的箭引爆气球※

建议

题目链接: https://leetcode.cn/problems/minimum-number-of-arrows-to-burst-balloons/
文章讲解: https://programmercarl.com/0452.%E7%94%A8%E6%9C%80%E5%B0%91%E6%95%B0%E9%87%8F%E7%9A%84%E7%AE%AD%E5%BC%95%E7%88%86%E6%B0%94%E7%90%83.html
视频讲解:

题目分析



方案一

说句实话,虽然是我自己写出来的此方案,但是也有点是似懂非懂,虽然我写出来了,但是我自己没有办法证明其全面性。

Arrays.sort(points, (o1, o2) -> o1[0] - o2[0]); :此行命令是必须要有的,我的贪心就贪在了从小向大排列,按照顺序尽可能的贪。

看了一下代码随想录的题解,和本方案大体思路一致,但是在细节上更加巧妙,可以参考代码随想录看一眼

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution {
public int findMinArrowShots(int[][] points) {
List<Integer[]> lists = new ArrayList<>();

Arrays.sort(points, (o1, o2) -> o1[0] - o2[0]);

boolean flag = true;
for (int[] point : points) {

for (int i = 0; i < lists.size(); i++) { // 先去已有的里面去判断
if (lists.get(i)[0] <= point[0] && lists.get(i)[1] >= point[0]) {
lists.set(i, new Integer[]{point[0], lists.get(i)[1]});
flag = false;
}
if (lists.get(i)[0] <= point[1] && lists.get(i)[1] >= point[1]) {
lists.set(i, new Integer[]{lists.get(i)[0], point[1]});
flag = false;
}
}

if (flag) {
lists.add(new Integer[]{point[0], point[1]});
}
flag = true;
}

return lists.size();
}
}

结果

解答成功:
执行耗时:878 ms,击败了5.03% 的Java用户
内存消耗:73.3 MB,击败了94.74% 的Java用户

分析

时间复杂度:
O( n logn ) 排序的时长

空间复杂度:
O( n )

代码随想录

https://programmercarl.com/0452.%E7%94%A8%E6%9C%80%E5%B0%91%E6%95%B0%E9%87%8F%E7%9A%84%E7%AE%AD%E5%BC%95%E7%88%86%E6%B0%94%E7%90%83.html

思路

如何使用最少的弓箭呢?

直觉上来看,貌似只射重叠最多的气球,用的弓箭一定最少,那么有没有当前重叠了三个气球,我射两个,留下一个和后面的一起射这样弓箭用的更少的情况呢?

尝试一下举反例,发现没有这种情况。

那么就试一试贪心吧!局部最优:当气球出现重叠,一起射,所用弓箭最少。全局最优:把所有气球射爆所用弓箭最少。

算法确定下来了,那么如何模拟气球射爆的过程呢?是在数组中移除元素还是做标记呢?

如果真实的模拟射气球的过程,应该射一个,气球数组就remove一个元素,这样最直观,毕竟气球被射了。

但仔细思考一下就发现:如果把气球排序之后,从前到后遍历气球,被射过的气球仅仅跳过就行了,没有必要让气球数组remove气球,只要记录一下箭的数量就可以了。

以上为思考过程,已经确定下来使用贪心了,那么开始解题。

为了让气球尽可能的重叠,需要对数组进行排序

那么按照气球起始位置排序,还是按照气球终止位置排序呢?

其实都可以!只不过对应的遍历顺序不同,我就按照气球的起始位置排序了。

既然按照起始位置排序,那么就从前向后遍历气球数组,靠左尽可能让气球重复。

从前向后遍历遇到重叠的气球了怎么办?

如果气球重叠了,重叠气球中右边边界的最小值 之前的区间一定需要一个弓箭

以题目示例: [[10,16],[2,8],[1,6],[7,12]]为例,如图:(方便起见,已经排序)

可以看出首先第一组重叠气球,一定是需要一个箭,气球3,的左边界大于了 第一组重叠气球的最小右边界,所以再需要一支箭来射气球3了。

C++代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
private:
static bool cmp(const vector<int>& a, const vector<int>& b) {
return a[0] < b[0];
}
public:
int findMinArrowShots(vector<vector<int>>& points) {
if (points.size() == 0) return 0;
sort(points.begin(), points.end(), cmp);

int result = 1; // points 不为空至少需要一支箭
for (int i = 1; i < points.size(); i++) {
if (points[i][0] > points[i - 1][1]) { // 气球i和气球i-1不挨着,注意这里不是>=;我的开头和别人的屁股挨着,也可以一箭射爆。
result++; // 需要一支箭
}
else { // 气球i和气球i-1挨着
points[i][1] = min(points[i - 1][1], points[i][1]); // 更新重叠气球最小右边界
}
}
return result;
}
};
  • 时间复杂度:O(nlog n),因为有一个快排
  • 空间复杂度:O(1),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要O(n)的栈空间

可以看出代码并不复杂。

注意事项

注意题目中说的是:满足 xstart ≤ x ≤ xend,则该气球会被引爆。那么说明两个气球挨在一起不重叠也可以一起射爆,

所以代码中 if (points[i][0] > points[i - 1][1]) 不能是>=

总结

这道题目贪心的思路很简单也很直接,就是重复的一起射了,但本题我认为是有难度的。

就算思路都想好了,模拟射气球的过程,很多同学真的要去模拟了,实时把气球从数组中移走,这么写的话就复杂了。

而且寻找重复的气球,寻找重叠气球最小右边界,其实都有代码技巧。

贪心题目有时候就是这样,看起来很简单,思路很直接,但是一写代码就感觉贼复杂无从下手。

这里其实是需要代码功底的,那代码功底怎么练?

多看多写多总结!

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/**
* 时间复杂度 : O(NlogN) 排序需要 O(NlogN) 的复杂度
* 空间复杂度 : O(logN) java所使用的内置函数用的是快速排序需要 logN 的空间
*/
class Solution {
public int findMinArrowShots(int[][] points) {
// 根据气球直径的开始坐标从小到大排序
// 使用Integer内置比较方法,不会溢出
Arrays.sort(points, (a, b) -> Integer.compare(a[0], b[0]));

int count = 1; // points 不为空至少需要一支箭
for (int i = 1; i < points.length; i++) {
if (points[i][0] > points[i - 1][1]) { // 气球i和气球i-1不挨着,注意这里不是>=
count++; // 需要一支箭
} else { // 气球i和气球i-1挨着
points[i][1] = Math.min(points[i][1], points[i - 1][1]); // 更新重叠气球最小右边界
}
}
return count;
}
}

31、第八章 贪心算法part04
http://yuanql.top/2023/08/13/02_1_代码随想录算法训练营18期/31、第八章 贪心算法part04/
作者
Qingli Yuan
发布于
2023年8月13日
许可协议