14.ReentrantLock、ReentrantReadWriteLock、StampedLock讲解

本笔记来源于:尚硅谷JUC并发编程(对标阿里P6-P7)
b站视频

文章来自:
https://www.yuque.com/gongxi-wssld/csm31d/ln0mq1w7wp1oy99g
https://www.yuque.com/liuyanntes/vx9leh/fpy93i
https://blog.csdn.net/dolpin_ink/category_11847910.html

脑图

本地:
尚硅谷JUC并发编程

在线:
尚硅谷JUC并发编程

在线脑图加载时间超长。

1、本章路线总纲

无锁→独占锁→读写锁→邮戳锁

2、关于锁的大厂面试题

你知道Java里面有哪些锁?

你说你用过读写锁,锁饥饿问题是什么?

有没有比读写锁更快的锁?

StampedLock知道吗?(邮戳锁/票据锁)

ReentrantReadWriteLock有锁降级机制策略你知道吗?

。。。。。。。。。。。。。。。

3、ReentrantReadWriteLock是什么

3.1读写锁说明

读写锁定义:
一个资源能够被多个读线程访问,或者被一个写线程访问,但是不能同时存在读写线程。

一体两面,读写互斥,读读共享
刀刃、刀背互斥

3.2 『读写锁』意义和特点

『读写锁ReentrantReadWriteLock』并不是真正意义上的读写分离,它只允许读读共存,而读写和写写依然是互斥的,大多实际场景是“读/读”线程间并不存在互斥关系,只有”读/写”线程或”写/写”线程间的操作需要互斥的。因此引入ReentrantReadWriteLock。

一个ReentrantReadWriteLock同时只能存在一个写锁但是可以存在多个读锁,但不能同时存在写锁和读锁(切菜还是拍蒜选一个)。
也即一个资源可以被多个读操作访问或一个写操作访问,但两者不能同时进行。

只有在读多写少情境之下,读写锁才具有较高的性能体现。

4、ReentrantReadWriteLock的特点

4.1 可重入

4.2 读写分离

4.3 无锁无序→加锁→读写锁演变复习

code演示ReentrantReadWriteLockDemo

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
package com.atguigu.juc.rwlock;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

class MyResource
{
Map<String,String> map = new HashMap<>();
//=====ReentrantLock 等价于 =====synchronized
Lock lock = new ReentrantLock();
//=====ReentrantReadWriteLock 一体两面,读写互斥,读读共享
ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();

public void write(String key,String value)
{
rwLock.writeLock().lock();
try
{
System.out.println(Thread.currentThread().getName()+"\t"+"---正在写入");
map.put(key,value);
//暂停毫秒
try { TimeUnit.MILLISECONDS.sleep(500); } catch (InterruptedException e) { e.printStackTrace(); }
System.out.println(Thread.currentThread().getName()+"\t"+"---完成写入");
}finally {
rwLock.writeLock().unlock();
}
}
public void read(String key)
{
rwLock.readLock().lock();
try
{
System.out.println(Thread.currentThread().getName()+"\t"+"---正在读取");
String result = map.get(key);
//后续开启注释修改为2000,演示一体两面,读写互斥,读读共享,读没有完成时候写锁无法获得
//try { TimeUnit.MILLISECONDS.sleep(200); } catch (InterruptedException e) { e.printStackTrace(); }
System.out.println(Thread.currentThread().getName()+"\t"+"---完成读取result:"+result);
}finally {
rwLock.readLock().unlock();
}
}
}

/**
* @auther zzyy
* @create 2021-03-28 11:04
*/
public class ReentrantReadWriteLockDemo
{
public static void main(String[] args)
{
MyResource myResource = new MyResource();

for (int i = 1; i <=10; i++) {
int finalI = i;
new Thread(() -> {
myResource.write(finalI +"", finalI +"");
},String.valueOf(i)).start();
}

for (int i = 1; i <=10; i++) {
int finalI = i;
new Thread(() -> {
myResource.read(finalI +"");
},String.valueOf(i)).start();
}

//暂停几秒钟线程
try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); }

//读全部over才可以继续写
for (int i = 1; i <=3; i++) {
int finalI = i;
new Thread(() -> {
myResource.write(finalI +"", finalI +"");
},"newWriteThread==="+String.valueOf(i)).start();
}
}
}

4.4 从写锁→读锁,ReentrantReadWriteLock可以降级

《Java 并发编程的艺术》中关于锁降级的说明:

锁的严苛程度变强叫做升级,反之叫做降级

why锁降级???
见后面《Oracle公司ReentrantWriteReadLock源码总结》

锁降级:将写入锁降级为读锁(类似Linux文件读写权限理解,就像写权限要高于读权限一样)

4.4.1 读写锁降级演示

可以降级

锁降级:遵循获取写锁→再获取读锁→再释放写锁的次序,写锁能够降级成为读锁。
如果一个线程占有了写锁,在不释放写锁的情况下,它还能占有读锁,即写锁降级为读锁。

Java8 官网说明

重入还允许通过获取写入锁定,然后读取锁然后释放写锁从写锁到读取锁,
但是,从读锁定升级到写锁是不可能的。

code演示LockDownGradingDemo

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
package com.atguigu.juc.rwlock;

import java.util.concurrent.locks.ReentrantReadWriteLock;

/**
* @auther zzyy
* @create 2021-03-28 10:18
* 锁降级:遵循获取写锁→再获取读锁→再释放写锁的次序,写锁能够降级成为读锁。
*
* 如果一个线程占有了写锁,在不释放写锁的情况下,它还能占有读锁,即写锁降级为读锁。
*/
public class LockDownGradingDemo
{
public static void main(String[] args)
{
ReentrantReadWriteLock readWriteLock = new ReentrantReadWriteLock();

ReentrantReadWriteLock.ReadLock readLock = readWriteLock.readLock();
ReentrantReadWriteLock.WriteLock writeLock = readWriteLock.writeLock();

writeLock.lock();
System.out.println("-------正在写入");

readLock.lock();
System.out.println("-------正在读取");

writeLock.unlock();
}
}

结论

如果有线程在读,那么写线程是无法获取写锁的,是悲观锁的策略

不可锁升级

线程获取读锁是不能直接升级为写入锁的。

在ReentrantReadWriteLock中,当读锁被使用时,如果有线程尝试获取写锁,该写线程会被阻塞。
所以,需要释放所有读锁,才可获取写锁,

4.4.2 写锁和读锁是互斥的

写锁和读锁是互斥的(这里的互斥是指线程间的互斥,当前线程可以获取到写锁又获取到读锁,但是获取到了读锁不能继续获取写锁),这是因为读写锁要保持写操作的可见性

因为,如果允许读锁在被获取的情况下对写锁的获取,那么正在运行的其他读线程无法感知到当前写线程的操作。

因此,分析读写锁ReentrantReadWriteLock,会发现它有个潜在的问题:
读锁全完,写锁有望;写锁独占,读写全堵;
如果有线程正在读,写线程需要等待读线程释放锁后才能获取写锁,见前面Case《code演示LockDownGradingDemo》
即ReadWriteLock读的过程中不允许写,只有等待线程都释放了读锁,当前线程才能获取写锁,
也就是写入必须等待,这是一种悲观的读锁,o(╥﹏╥)o,人家还在读着那,你先别去写,省的数据乱。


后续讲解StampedLock时再详细展开

分析StampedLock(后面详细讲解),会发现它改进之处在于:
读的过程中也允许获取写锁介入(相当牛B,读和写两个操作也让你“共享”(注意引号)),这样会导致我们读的数据就可能不一致!
所以,需要额外的方法来判断读的过程中是否有写入,这是一种乐观的读锁

显然乐观锁的并发效率更高,但一旦有小概率的写入导致读取的数据不一致,需要能检测出来,再读一遍就行。

4.5 读写锁之读写规矩,再说降级

Oracle公司ReentrantWriteReadLock源码总结

锁降级 下面的示例代码摘自ReentrantWriteReadLock源码中:
ReentrantWriteReadLock支持锁降级,遵循按照获取写锁,获取读锁再释放写锁的次序,写锁能够降级成为读锁,不支持锁升级。
解读在最下面:

1 代码中声明了一个volatile类型的cacheValid变量,保证其可见性。

2 首先获取读锁,如果cache不可用,则释放读锁,获取写锁,在更改数据之前,再检查一次cacheValid的值,然后修改数据,将cacheValid置为true,然后在释放写锁前获取读锁;此时,cache中数据可用,处理cache中数据,最后释放读锁。这个过程就是一个完整的锁降级的过程,目的是保证数据可见性。

如果违背锁降级的步骤
如果当前的线程C在修改完cache中的数据后,没有获取读锁而是直接释放了写锁,那么假设此时另一个线程D获取了写锁并修改了数据,那么C线程无法感知到数据已被修改,则数据出现错误。

如果遵循锁降级的步骤
线程C在释放写锁之前获取读锁,那么线程D在获取写锁时将被阻塞,直到线程C完成数据处理过程,释放读锁。这样可以保证返回的数据是这次更新的数据,该机制是专门为了缓存设计的。

5、邮戳锁StampedLock

无锁→独占锁→读写锁→邮戳锁

5.1 是什么

StampedLock是JDK1.8中新增的一个读写锁,
也是对JDK1.5中的读写锁ReentrantReadWriteLock的优化。

邮戳锁(也叫票据锁)

stamp(戳记,long类型)

代表了锁的状态。当stamp返回零时,表示线程获取锁失败。
并且,当释放锁或者转换锁的时候,都要传入最初获取的stamp值。

5.2 它是由锁饥饿问题引出

锁饥饿问题

ReentrantReadWriteLock实现了读写分离,但是一旦读操作比较多的时候,想要获取写锁就变得比较困难了,假如当前1000个线程,999个读,1个写,有可能999个读取线程长时间抢到了锁,那1个写线程就悲剧了 。因为当前有可能会一直存在读锁,而无法获得写锁,根本没机会写.

如何缓解锁饥饿问题?

使用“公平”策略可以一定程度上缓解这个问题

new ReentrantReadWriteLock(true);

但是“公平”策略是以牺牲系统吞吐量为代价的

StampedLock类的乐观读锁闪亮登场

ReentrantReadWriteLock
允许多个线程同时读,但是只允许一个线程写,在线程获取到写锁的时候,其他写操作和读操作都会处于阻塞状态,
读锁和写锁也是互斥的,所以在读的时候是不允许写的,读写锁比传统的synchronized速度要快很多,
原因就是在于ReentrantReadWriteLock支持读并发

StampedLock横空出世
ReentrantReadWriteLock的读锁被占用的时候,其他线程尝试获取写锁的时候会被阻塞。
但是,StampedLock采取乐观获取锁后,其他线程尝试获取写锁时不会被阻塞,这其实是对读锁的优化,
所以,在获取乐观读锁后,还需要对结果进行校验。

5.3 StampedLock的特点

所有获取锁的方法,都返回一个邮戳(Stamp),Stamp为零表示获取失败,其余都表示成功;

所有释放锁的方法,都需要一个邮戳(Stamp),这个Stamp必须是和成功获取锁时得到的Stamp一致;

StampedLock是不可重入的,危险(如果一个线程已经持有了写锁,再去获取写锁的话就会造成死锁)

StampedLock有三种访问模式:

①Reading(读模式):功能和ReentrantReadWriteLock的读锁类似
②Writing(写模式):功能和ReentrantReadWriteLock的写锁类似
③Optimistic reading(乐观读模式):无锁机制,类似于数据库中的乐观锁,支持读写并发,很乐观认为读取时没人修改,假如被修改再实现升级为悲观读模式

乐观读模式code演示

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
package com.atguigu.itdachang;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.StampedLock;

/**
* @auther zzyy
* @create 2020-07-22 16:03
*/
public class StampedLockDemo
{
static int number = 37;
static StampedLock stampedLock = new StampedLock();

public void write()
{
long stamp = stampedLock.writeLock();
System.out.println(Thread.currentThread().getName()+"\t"+"=====写线程准备修改");
try
{
number = number + 13;
}catch (Exception e){
e.printStackTrace();
}finally {
stampedLock.unlockWrite(stamp);
}
System.out.println(Thread.currentThread().getName()+"\t"+"=====写线程结束修改");
}

//悲观读
public void read()
{
long stamp = stampedLock.readLock();
System.out.println(Thread.currentThread().getName()+"\t come in readlock block,4 seconds continue...");
//暂停几秒钟线程
for (int i = 0; i <4 ; i++) {
try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); }
System.out.println(Thread.currentThread().getName()+"\t 正在读取中......");
}
try
{
int result = number;
System.out.println(Thread.currentThread().getName()+"\t"+" 获得成员变量值result:" + result);
System.out.println("写线程没有修改值,因为 stampedLock.readLock()读的时候,不可以写,读写互斥");
}catch (Exception e){
e.printStackTrace();
}finally {
stampedLock.unlockRead(stamp);
}
}

//乐观读
public void tryOptimisticRead()
{
long stamp = stampedLock.tryOptimisticRead();
int result = number;
//间隔4秒钟,我们很乐观的认为没有其他线程修改过number值,实际靠判断。
System.out.println("4秒前stampedLock.validate值(true无修改,false有修改)"+"\t"+stampedLock.validate(stamp));
for (int i = 1; i <=4 ; i++) {
try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); }
System.out.println(Thread.currentThread().getName()+"\t 正在读取中......"+i+
"秒后stampedLock.validate值(true无修改,false有修改)"+"\t"
+stampedLock.validate(stamp));
}
if(!stampedLock.validate(stamp)) {
System.out.println("有人动过--------存在写操作!");
stamp = stampedLock.readLock();
try {
System.out.println("从乐观读 升级为 悲观读");
result = number;
System.out.println("重新悲观读锁通过获取到的成员变量值result:" + result);
}catch (Exception e){
e.printStackTrace();
}finally {
stampedLock.unlockRead(stamp);
}
}
System.out.println(Thread.currentThread().getName()+"\t finally value: "+result);
}

public static void main(String[] args)
{
StampedLockDemo resource = new StampedLockDemo();

new Thread(() -> {
resource.read();
//resource.tryOptimisticRead();
},"readThread").start();

// 2秒钟时乐观读失败,6秒钟乐观读取成功resource.tryOptimisticRead();,修改切换演示
//try { TimeUnit.SECONDS.sleep(6); } catch (InterruptedException e) { e.printStackTrace(); }

new Thread(() -> {
resource.write();
},"writeThread").start();
}
}

读的过程中也允许获取写锁介入

5.4 StampedLock的缺点

StampedLock 不支持重入,没有Re开头

StampedLock 的悲观读锁和写锁都不支持条件变量(Condition),这个也需要注意。

使用 StampedLock一定不要调用中断操作,即不要调用interrupt() 方法

如果需要支持中断功能,一定使用可中断的悲观读锁 readLockInterruptibly()和写锁writeLockInterruptibly()


14.ReentrantLock、ReentrantReadWriteLock、StampedLock讲解
http://yuanql.top/2023/06/13/18_JUC/14.ReentrantLock、ReentrantReadWriteLock、StampedLock讲解/
作者
Qingli Yuan
发布于
2023年6月13日
许可协议