二分查找模板

leetcode链接:
https://leetcode.cn/leetbook/read/binary-search/x6q6fi/

模板 I

https://leetcode.cn/leetbook/read/binary-search/xe5fpe/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
int binarySearch(int[] nums, int target){
if(nums == null || nums.length == 0)
return -1;

int left = 0, right = nums.length - 1;
while(left <= right){
// Prevent (left + right) overflow
int mid = left + (right - left) / 2;
if(nums[mid] == target){ return mid; }
else if(nums[mid] < target) { left = mid + 1; }
else { right = mid - 1; }
}

// End Condition: left > right
return -1;
}

关键属性

二分查找的最基础和最基本的形式。
查找条件可以在不与元素的两侧进行比较的情况下确定(或使用它周围的特定元素)。
不需要后处理,因为每一步中,你都在检查是否找到了元素。如果到达末尾,则知道未找到该元素。

区分语法

  • 初始条件:left = 0, right = length-1
  • 终止:left > right
  • 向左查找:right = mid-1
  • 向右查找:left = mid+1

模板 II

https://leetcode.cn/leetbook/read/binary-search/xerqxt/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
int binarySearch(int[] nums, int target){
if(nums == null || nums.length == 0)
return -1;

int left = 0, right = nums.length;
while(left < right){
// Prevent (left + right) overflow
int mid = left + (right - left) / 2;
if(nums[mid] == target){ return mid; }
else if(nums[mid] < target) { left = mid + 1; }
else { right = mid; }
}

// Post-processing:
// End Condition: left == right
if(left != nums.length && nums[left] == target) return left;
return -1;
}

关键属性

一种实现二分查找的高级方法。
查找条件需要访问元素的直接右邻居。
使用元素的右邻居来确定是否满足条件,并决定是向左还是向右。
保证查找空间在每一步中至少有 2 个元素。
需要进行后处理。 当你剩下 1 个元素时,循环 / 递归结束。 需要评估剩余元素是否符合条件。

区分语法

  • 初始条件:left = 0, right = length
  • 终止:left == right
  • 向左查找:right = mid
  • 向右查找:left = mid+1

模板 III

https://leetcode.cn/leetbook/read/binary-search/xe22ch/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
int binarySearch(int[] nums, int target) {
if (nums == null || nums.length == 0)
return -1;

int left = 0, right = nums.length - 1;
while (left + 1 < right){
// Prevent (left + right) overflow
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
return mid;
} else if (nums[mid] < target) {
left = mid;
} else {
right = mid;
}
}

// Post-processing:
// End Condition: left + 1 == right
if(nums[left] == target) return left;
if(nums[right] == target) return right;
return -1;
}

关键属性

实现二分查找的另一种方法。
搜索条件需要访问元素的直接左右邻居。
使用元素的邻居来确定它是向右还是向左。
保证查找空间在每个步骤中至少有 3 个元素。
需要进行后处理。 当剩下 2 个元素时,循环 / 递归结束。 需要评估其余元素是否符合条件。

区分语法

  • 初始条件:left = 0, right = length-1
  • 终止:left + 1 == right
  • 向左查找:right = mid
  • 向右查找:left = mid

模板分析

https://leetcode.cn/leetbook/read/binary-search/xewjg7/

模板 #1 (left <= right)

二分查找的最基础和最基本的形式。
查找条件可以在不与元素的两侧进行比较的情况下确定(或使用它周围的特定元素)。
不需要后处理,因为每一步中,你都在检查是否找到了元素。如果到达末尾,则知道未找到该元素。  

模板 #2 (left < right)

一种实现二分查找的高级方法。
查找条件需要访问元素的直接右邻居。
使用元素的右邻居来确定是否满足条件,并决定是向左还是向右。
保证查找空间在每一步中至少有 2 个元素。
需要进行后处理。 当你剩下 1 个元素时,循环 / 递归结束。 需要评估剩余元素是否符合条件。  

模板 #3 (left + 1 < right)

实现二分查找的另一种方法。
搜索条件需要访问元素的直接左右邻居。
使用元素的邻居来确定它是向右还是向左。
保证查找空间在每个步骤中至少有 3 个元素。
需要进行后处理。 当剩下 2 个元素时,循环 / 递归结束。 需要评估其余元素是否符合条件。


二分查找模板
http://yuanql.top/2023/03/30/02_leetcode/二分查找模板/
作者
Qingli Yuan
发布于
2023年3月30日
许可协议